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Abstract

A study of 2-D acoustic mode coupling in range dependent shallow water with a trans-
versely isotropic (TI) bottom is presented. Most marine sediments exhibit a fair de-
gree of transverse isotropy that can have a significant effect on the signal properties
of strongly bottom interacting sound. Locally, transverse isotropy has the greatest
effect on the fundamental and near fundamental modal overtones. The local shallow
water TI modes have reduced amplitude in the sediment relative to the corresponding
shallow water modes for an isotropic bottom. Calculations of mode-mode coupling co-
efficients for a range dependent medium indicate that mode coupling is more strongly
confined to modal nearest neighbors for a TI medium characterized predominantly by
shear wave anisotropy, when compared to the corresponding isotropic medium. As the
frequency increases, the strongest coupling occurs between higher overtones and also
becomes more strongly peaked around nearest neighbors. The coupled mode theory of
Maupin[Geophys. J. 93, 173-185 (1988)] is employed to model the coupling. This the-
ory can treat smooth gradients and sloping layer boundaries for all five of the bottom
elastic moduli in a TI medium, the densities, and the ranée dependence of the water

column itself. This coupled mode formulation also properly accounts for the continuity

of stress and displacement boundary conditions in an exact way at irregular interfaces.




Introduction

Acoustic propagation in shallow water is generally characterized by strong range de-
pendence and interaction with the bottom. The range dependence is both geometric and
material in nature. Fluctuations in water depth and layer thicknesses of bottom sediments
impose geometric variations of the medium with range. Range dependent gradients in elastic
parameters and density of individual layers further complicate the task of characterizing and
understanding shallow water acoustic propagation. Adequate modeling and understanding
of shallow water signals that interact strongly with the bottom require a proper treatment
of the marine sediment and basement properties. Marine sediments typically exhibit finite
shear wave speeds that are much less than the sound speed in the water column!?. The
vertical gradients of the shear speed can be quite large, and velocity anisotropy is an almost
universal feature of marine sediments, with transverse isotropy (TI) being the most common
type of anisotropy®~S.

Strong range dependence causes energy in an initially unidirectional propagating signal
to be redistributed among forward and backward discrete arlld continuum modes. Inclusion
of finite shear speed in the sediment is necessary to model the Stoneley wave propagating at
the water sediment interface and to properly account for the component of transmission loss
due to conversion to shear waves. Acoustic energy can be scattered from the water column
into the Stoneley wave by range dependence of the water-sediment interface”. Assuming that
the bottom properties are isotropic when they are really transversely isotropic can lead to
underestimating sediment sound speed gradients, and overestimating sediment thickness and
shear velocity®. Also, as will be seen below, incorrectly assuming isotropy has a significant
effect on the redistribution of acoustic energy through range dependence induced mode
coupling.

The original formulation of the coupled mode equations for sound propagation in a range




dependent ocean effected a local separation of the Helmholtz equation for the velocity poten-
tial or, equivalently, the pressure (Pierce®, Milder'?). The dependent variable is represented
as the superposition of a set of range varying basis functions, the “local modes,” with range
dependent amplitude coefficients. The elements of this local basis are chosen to be the modes
of the plane layered structure that corresponds locally in terms of material properties and
layer thicknesses to the range dependent structure. This approach leads to another second
order differential equation that must be solved to obtain the range dependent modal ampli-
tude coefficients. The right hand side of this equation consists of source terms quantifying
the strength of the coupling between different local modes. The formulations presented by
Pierce? and Milder' yield first and second order coupling coefficients that depend on the
first and second order derivatives, respectively, with respect to the range coordinate of the
local mode functions.

The second order coupling coefficients are cumbersome to deal with analytically. They
can be shown to depend on the second derivatives and the squares of the first derivatives
with respect to the range coordinate of the boundary slopes-and material parameters. Con-
sequently, the second order coupling coefficients have been routinely ignored (Chwieroth et
al.', Rutherford and Hawker'?, McDaniel'?, Hall'4).

It is interesting to note, however, that the presence of the second order coupling coeffi-
cients is an artifact of the formulation. It is a consequence of working with the Helmholtz
equation (a second order differential equation) rather than directly with the coupled first
order equations for the pressure and velocity. Odom!®!® has derived a local coupled mode
theory directly from the field quantities pressure and velocity that contains all the modal
interaction physics in a single coupling coefficient. This formulation exhibits explicit de-
pendence on geometric and material gradients, and is mathematically and numerically more
efficient. Maupin'? extended the results of Refs.(15,16) to take elastic effects including

anisotropy into account. We have applied Maupin’s extensions to the case of fluid-elastic

4




media in order to examine the mode coupling in a realistic shallow water model.
Theory

This section contains a fairly brief, self-contained summary of the coupled mode theory for
layered fluid-elastic media as developed by Maupin!’. We include this because these tech-
niques seem to be generally unfamiliar to the ocean acoustics community. A particularly
important point is the treatment of the boundary conditions at the interface between two
geometrically irregular layers. Rutherford and Hawker'? derived corrections to the eigen-
functions for a plane layered medium that satisfy the boundary conditions at irregular layer
interfaces to first order in the interface slope. It is, however, possible to satisfy the bound-
ary conditions at the irregular interface exactly by transforming inhomogeneous boundary
conditions to homogeneous boundary conditions and adding an additional source term to
the governing system of differential equations!”. This has recently been rediscovered by
Fawcett!® for fluid media. Gillette!® introduced a local coordinate transformation that leads
to a solution that exactly satisfies the boundary conditions for the case of a single perfectly
rigid range dependent boundary. Gillette’s problem can also be solved with the local mode
theory described here without transforming to a special local coordinate system. In fact the
following treatment of the coupled mode problem leads to a solution which exactly satis-
fies the range dependent boundary conditions at all interfaces with no approximations or
neglected terms. As will be seen below, it is not necessary to construct depth functions
satisfying boundary conditions involving normal derivatives on a range dependent bound-
ary. This exact solution is also numerically tractible, and may be computed using any good
normal mode code as the core program. The treatment is valid for solid-solid as well as fluid-
solid and fluid-fluid boundaries. It is also valid for general anisotropic media. Our specific
examples are carried out for transversely isotropic media with a vertical axis of symmetry.

First we treat the mode coupling due to range dependence within the bottom material. In



the second sub-section we review the additional terms in the mode coupling matrix due to

the range dependence of the water column itself and the range dependence of the fluid-solid

boundary at the water-bottom interface.

A. Mode Coupling in Solid Elastic Media

We use a Cartesian coordinate system in which the z axis ( or z; axis) is the direction
of the range dependence, y-axis (or z, axis) is the axis along which there is no variation
in medium properties, and z-axis (or z3 axis) is the depth axis and taken to be positive

downward. The particle displacement vector is w = (w,, wy, w,).

0

For the elastic moduli, the matrix notation of Woodhouse?® is employed such that

(Cij)y = crity- (1)

Note that this is not the same as the widely used abbreviated subscript notation for the
elasticity tensor as described by Auld*! for example. The individual C;;’s in Woodhouse’s
notation are matrices, not individual matrix elements as in the abbreviated subscript nota-
tion.

The equations of motion for an elastic medium are

82

W
PoE = Vit: +f, (2)

where p is the density, f is an external force and the traction vector t is defined by

6=y (). 3

Ox;
where w = (w,, wy, w,) and t; = (Tig, Tiy, Tiz)-

The displacement, Fourier transformed with respect to y and ¢, is represented as

wazmpw)= [ [ Wy, explilpy — wt))dyd ()




‘e

where p is the spatial wave number in the y-direction. The equations of motion can then be

written as
ot ot
— o = 2L hd
W = ipty + 5 +f (5)
where
ow | ow
t; = Cil"a; —1pCipw + Cz‘3"6-z—- (6)

The same symbol w is used for both the transformed and untransformed displacement. The
subsequent development is carried out completely in the (z, z, p, w) domain, and there should
be no confusion. The use of ¢ as both an index and as v/—1 should also be clear from context.

Introducing the 6-component displacement-stress vector u = (w,t)T where w is as de-
fined above and t = t; = (744, Teys Tzz), the equations of motion can be written as the
first order system where the derivatives with respect to the propagation direction, that is,
the direction of the range dependence of the structure, appear only on the left hand side of

equation

The differential operator

—CR'Ci3 + C' Chaip Cil
A= (8)

£ (Q33%) +ipQas 2 + Z(Qa2ip) + p* Qoo — 2030yt + ipCu Ot
does not depend on the horizontal derivatives. The matrices Q;; are defined as

Qi = Cij — CuCHCy;. 9)
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The boundary conditions require the continuity of traction and displacement across inter-
faces. The free surface condition for an elastic (fluid) medium is that the traction (pressure)
vanishes and a radiation condition is assumed as z — 0o. The interfaces of the range depen-

dent medium are taken to be of the form z = h(z) with normal n. Thus the slope of m-th

interface can be written as

d m m ;
on _ Ohm (10)

dr ~ 9z

By introducing the inclination angle 8,, = tan‘l(hm), the normal vector can be expressed as
n = sin i — cos 6k. (11)
The continuity of traction T = t;n; across m-th interface can be written as

[T] = [tysin 6, — t3c0s Op)m

= [ty bl = 0. | (12)

V1+h2,
The square brackets [-],, indicate the jump of the enclosed quantity across the m'™ interface,

taken from bottom to top. Consequently, we have

[t3]m = hm[t]m- (13)

The continuity of traction normal to a sloping interface is then equivalent to a jump in
the traction along the vertical axis. The equations of motion (7) along with the interface
boundary conditions (13) and the free surface and radiation conditions are an exact formal
representation of the equations for the displacement-stress field in a range dependent layered
elastic medium. What makes a solution of the problem difficult is the inhomogeneous form
of the interface boundary condition Eq.(13). Historically this inhomogeneous boundary
condition has been dealt with by ignoring the inhomogeneity!'%51622  and replacing it with
the approximate homogeneous condition. That is, the condition that the normal component

of the traction be continuous across interfaces was replaced by the condition that only the
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vertical component of the traction be continuous. It was pointed out by Maupin!” that the
traction discontinuity in the interface boundary conditions can be converted to a localized
volume force located along the interface. This follows from a representation theorem for
elastic media investigated by Burridge and Knopoff®3. The resulting equivalent volume force
becomes a source term on the right hand side of Eq.(7), and the interface boundary conditions
become homogeneous. Equations (7) and (13) can now be written in the absence of body

forces as

ou_ 4 Yk { ’ } (14)
— = Au + m
Oz m  [6mb(z = hn())

with the interface conditions

[ta]m = [W]m = 0. (15)

Equations (14) and (15) are a very important result. This first order system of inhomo-
geneous equations with homogeneous boundary conditions formally describes the evolution
of the displacement-stress fields along the range direction. rIl‘he solution to this system will
now be expressed in terms of coupled local modes. These local modes, defined below, are the
eigenfunctions of the range independent medium that locally share the same depth depen-
dence as the range dependent medium. This means that locally at some point z, in range,
the density p(zo, z) and the elastic moduli Cy;(zy, 2) are taken to be functions of depth only

so that

p(z0,2) = p(z) and  Cyj(xo, 2) = Cij(2). (16)

The wave propagation problem for a 2-dimensional range dependent medium can be
solved exactly in terms of the eigenfunctions of the range independent medium. These

eigenfunctions are the homogeneous solutions to Eq.(14) with homogeneous boundary con-
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ditions Eq.(15). The boundary conditions at the irregular interfaces are satisfied exactly by
including the effective source term in Eq.(14). No approximations have been made.

Local homogeneous solutions of the equations of motion (Eq.(14)) which depend parametri-

cally on z are represented as

u(zo, z)exp{—ik" (zo)z} (17)

with u satisfying

— k" (zo)u" (zo, 2) = AU’ (20, 2) (18)

and the homogeneous boundary conditions [w"],, = 0 and [t}],, = 0 across interfaces. The
horizontal wave number in the z-direction is k"(zy), and taken to be real.

The final definition required is the following scalar product between two local eigenfunc-

tions of index r and q.
(u’,u") = z/ (W™ — t”*w")dz (19)
0

where * indicates complex conjugation. The scalar product (19) is Hermitian, i.e.

(f,9)={g, )" (20)

The local modes at fixed values of frequency and p are orthogonal with respect to this scalar

product. The local modes are normalized such that

(u?,u") = 6,,. (21)

Thus, they all carry the same energy flux across planes z = constant.
The basic idea of the coupled local mode technique is to seek a solution for the equations

of motion as a coupled set of local modes whose amplitudes and phases vary with laterally
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varying structure. The evolution of the range dependent amplitude determines how energy
is exchanged between modes as a signal propagates through the medium. The solution of
the equations of motion for the displacement-stress field in the range dependent medium is

represented as the sum over local modes
w . w'(z, 2)
u= =3 (z) exp (~¢ / k’(()d() , (22)
t r 0 t7(z, 2)

where k(() is the local horizontal wavenumber. The local modes satisfy the homogeneous
boundary conditions, Eq.(15), of a plane layered medium, and can therefore be computed
with any appropriate normal mode code.

The derivation of the evolution equation for the range dependent amplitude coefficients
cr(z) proceeds in the same fashion as previous coupled mode developments. The represen-
tation Eq.(22) is substituted into the equations of motion Eq.(14). The scalar product of

the resulting expression is formed with the displacement-stress vector of the gth mode u?,

yielding:

with the coupling matrix

ou”

oz

By = {~(0!, 5) 41 3 [t ] Jexp (z /0 -k )dC) (24)

In the case of very weak range dependence, we can set

B, =0, (25)

indicating that individual modes propagate independently without interacting. This is the

11
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adiabatic approximation®19202%, The validity of the adiabatic approximation requires that
the medium properties change very slowly with range. The total change can actually be
quite large, but the rate of change with range must be small enough so that modes do
not exchange energy among each other and are able to adjust their shapes to the local
environment. Backscattering is automatically excluded by the adiabatic approximation, as
is radiation to the continuum. A medium characterized by layer thicknesses or material
properties that change significantly over a mode equivalent ray cycle distance will not be
well modeled by the adiabatic approximation.

The form of the coupling matrix in Eq.(24) is not well suited to numerical computation
because of the presence of the range derivatives of the local mode functions. The coupling
matrix By, can be transformed so that the only range derivatives appearing in the expression
are of the density and elastic moduli within layers and of the interface functions h,,(z) at
layer boundaries. We omit the lengthy derivation and refer the interested reader to Reference
(17). The final form for the coupling matrix in the solid medium comprising the bottom is

then:

ow"

0z
(CglC'ﬁl)t' — Wq*ip(CmC'l_ll)tr

1 ©° . ., ow™ . ow’ .
B, = (/0 (Wq P‘UzW - Q33 — wipQas

k7 — kT 0z 0z
q* | . . 9 q*
9z QRa2ipw" — W Qop W™ — 9z
A o0 To R T, * A Y—1or
——t"*(C’ﬁlClg) aZ +tq (Clllclz)zpw +tq Clllt )dZ
7 * r 8Wq* aWT * r
+th [—Wq pPw" — g Q33 Ep + W Quw'p’ +
ow’

0z

_|_

T

owa*

0z

(Ca: Ot

—t%*(ClCrs)—=— + thﬁltr} ) exp (z /0 (k- k')dg) (26)

The coupling matrix Eq.(26) involves an integral term related to the lateral derivative
of the elastic moduli and density inside the layers. The interface term is a combination of

an expression derived from the continuity conditions and another arising from jumps in the
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lateral derivatives of the elastic coefficients. It is the former of the these two interface terms
that appears as the effective volume source term on Eq.(14). There are no range derivatives
of the local eigenfunctions, and there is no need to introduce a special coordinate system.
The expression(26) describes the coupling in a fully anisotropic 2-dimensional medium. We
have derived the form of the matrices C;; and Q;; for a transversely isotropic medium, and
listed the result in the Appendix. These have also been given by Maupin?®. We use the
notation of Love? for the five elastic moduli required to characterize a transversely isotropic
medium. The relationship between Love’s?® notation and the abbreviated subscript notation

for the elastic moduli of a TI medium is also given in the Appendix.

B. Coupling Terms for Fluid Layer and Fluid-Elastic Interface

In this subsection we very briefly review the the additional terms required to treat the
mode coupling due to the range dependence of the water column and the fluid-solid interface
at the water-bottom boundary'’. We make the two assumptions that: 1. The water column
surface is flat; and 2. The water density p and incompressibility A may vary with depth and
range but not with time. We assume an ocean of depth h = h(z).

In a fluid medium, the displacement-stress vector u is

u= {w} (27)
t

The x component of the particle displacement is w,, and the scalar t is the pressure. The

equations of motion written in first order matrix form are

ou

where the operator A in the fluid is




‘e

0 t-Zi (L2
Az( pw a(pwa)), (29)

and f is the source vector. As before p is the spatial wavenumber in the y (cross-range)

direction.

An ideal inviscid fluid does not support shear, so the boundary condition at the fluid-
solid bottom boundary requiring continuity of the tangential component of displacement is
relaxed and replaced with a free slip boundary condition. This free slip boundary condition
results in a physically unrealistic discontinuity in the tangential component of displacement
w,, which can be remedied by including a small nonzero viscosity in the equations of motion

for the fluid.

The continuity conditions across a fluid-solid interface of the form z = h(z) are

[ts — Aty =0, [, — hw,] = 0. | (30)

Again, these continuity conditions can be transformed into continuity conditions across
a flat interface plus a volume force located along the fluid-solid interface. A first part of this

force applies in the solid part only:

f = h[—t,)6(z — h(z)). (31)

A second one can be taken as applying on either side of the interface:

fi=h <[wz]CS3ij“a"i_j> d(z — h(z)) (32)

where Cs3;; has to be taken in the layer where we actually choose to apply the force.
The scalar product (19) now becomes:

h
(u,u") = i/o (wt" — tTwl)dz + z'/hoo(wq*t{ —tI'w)dz (33)

14
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To obtain an evolution equation for the amplitude coefficients, one uses the properties of
the scalar product (33) and proceeds exactly as in the solid-solid case. The transformation
of the coupling matrix B, also proceeds in an identical manner. The final result requires
that several terms be added to the right hand side of Eq.(26). On the solid side of interface

it is necessary to add

—~ih(k? — k") (wE'77, + T w]) (34)

to the terms which already hold for a purely solid medium. On the fluid side of the interface
it is necessary to add the term

[ 8t 1 Bt 1 p?

YN AT LY [l T g* 2,7 .

< ()\ pw2> t" + wl pw wx) (35)
Finally, inside the fluid layer are the integral terms describing the coupling resulting from

the continuous range dependent variations of the water column

h 1 p? ot 1 ot
gx s 2,7 1 = — t = dz. 6
/0 Wy P W+ </\ pw2> 0z pw? 0z ? (36)
These additional terms are multiplied by the global term:
_1 (z / " (ke k’”)dg) (37)
(k7 — k7) P\ Jo

A final note is that the integral in Eq.(26), describing coupling due to continuous range
dependence of the density and elastic moduli in the bottom, now extends from the ocean
bottom A(z) to infinity. It would also be a simple matter to incorporate an additional solid

layer at the surface to model the mode coupling in an ice covered sea.
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C. Energy Conservation

As indicated by Eq.(21), the local modes are normalized to carry the same energy flux
across planes z = constant. We can obtain a statement of energy conservation for a lossless
range dependent medium by substituting the local mode representation of the displacement-
stress field Eq.(22) into the scalar product Eq.(19) and setting the derivative with respect

to z equal to 0, yielding

0 4 47y — 3 2
) = 5 Yle(@)

- ¥ (Zalo)ee) + alo) o)

q

= Y (By + By,) cr()ci(x)

q,r

= 0. , (38)

We have used the fact that

> (o) (£ Bpeite)) = Terto) (S Bria) ()
q r
since the mode indices {gq,r} are summed over the same set.

The only way for Eq.(38) to be satisfied generally is for the coupling matrix to be anti-

Hermitian, i.e.

B, = —B%, (40)
g rq

This anti-Hermiticity is a necessary consequence of energy conservation in a lossless medium.
It can be seen by inspection that the coupling matrix By, given by Eq.(26) is anti-Hermitian.
The additional coupling terms for the fluid layer and interface, equations (34), (35) and (36)

are also anti-Hermitian.
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An obvious consequence of Eq.(40) is that

Re(B,,) = 0. (41)

If we insist that the phase of the local modes be continuous from point to point in the

medium then we should also choose

Im(B,,) = 0. (42)

D. Evolution of Range Dependent Mode Amplitudes

The theory we have summarized up to this point only describes the local mode-mode in-
teractions caused by the range dependence of the medium. In order to synthesize a complete
signal propagating in a strongly range dependent medium for which the adiabatic approxi-
mation is not valid, we must solve the evolution equation Eq.(23) for the mode amplitudes.
A complete solution for a strongly range dependent medium must account for the interaction
of both forward(+) and backward(—) propagating modes. The evolution of both the forward

and backward propagating components of a signal is described by

o ct(z) Btt(z) Bt (z) ct(z)
el = (43)
% \c-@)/ \B~*@) B~(2)/ \c(@)
where ¢t and ¢~ are n-dimensional vectors whose elements are the amplitude coefficients of
n forward and backward propagating modes. The n x n matrices B**, Bt~, B~* and B~
describe forward-to-forward, forward-to-backward, backward-to-forward and backward-to-
backward coupling, respectively.
If we specify a geometry defined by a heterogeneous region sandwiched between two

homogeneous (plane layered) regions, and assume a signal incident from the left onto the

heterogeneous region, Eq.(43) defines a 2n x 2n boundary value problem for the amplitudes of
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the forward and backward propagating modes. A schematic of a range dependent medium is
shown in Figure 1. The boundary values are ¢*(z), known at z = z, on the left side of the
heterogeneous region, and ¢~ (zg) = 0 on the right side of the heterogeneous region at z = zx.
Stable numerical solution of the two point boundary value problem defined by Eq.(43) and the
two boundary values is problematic due to presence of growing and decaying mode amplitudes
within the heterogeneous region. This situation is exacerbated if the heterogeneous region
is extended in range. Kennett?” reformulated the two point boundary value problem as
an initial value problem for the reflection and transmission properties of the heterogeneous
region using invariant imbedding techniques.

The procedure is to define a transmission matrix T(zg, z1) that connects the c*(z) on

the left side of the heterogeneous region with the ¢*(zg) on the right side of the heterogeneous

region

c*(zr) = T(zg,z)ct(zL)- (44)

In addition a reflection matrix R(zg, z1) is defined that relates the backscattered component
¢~ (zr) from the heterogeneous region to the forward propagating component c*(z;) at the

left side of the heterogeneous region

¢ (z1) = R(zg, zr)ct (zL). (45)

We differentiate Eqs.(44) and (45) with respect to zp,

9 + _ 0 s 9 -

ach (zg) = 6$LTC (xL)—f-TET—L—c (zL)=0 (46)
——(z—c (z1) = —Q—Rc+(x ) + R=—c™(z1) (47)
orr, L= orr, L T L
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The derivatives of the amplitude vectors are replaced with their expressions from Eq.(43), and
¢”(zr) can be removed from the equation using Eq.(45). After removing a common factor
of c*(zg), we arrive at coupled matrix Ricatti equations for the reflection and transmission
matrices for the heterogeneous region

0

—R=B"*+B"R-RB* -RB* R (48)
a.’L'L

and
0

—T = -TB*f - TB*"T. 4
B T (49)

The integration begins to the right of the heterogeneous region at 2 and proceeds to the

left with the initial conditions

T(zr,zr) =1 and R(zg,zg)=0. (50)

I is the n x n identity matrix.

The stability of the coupled set of first order equations (48) and (49) is significantly
improved over that of the original two point boundary value problem. If backscattering from
the heterogeneous region can be neglected, then we are left with only the equation

0

—T = —TB**, 51
. B (51)

Eq.(51) describes a level of approximation between that implied by the adiabatic approxi-
mation Eq.(25) and the complete solution described by Eq.(48) and Eq.(49) with the initial
conditions Eq.(50).

This concludes our summary of the complete 2-D coupled mode theory. This theory
incorporates an exact treatment of the boundary conditions at sloping interfaces as well as

being able to handle smooth gradients in density and all elastic moduli. We have applied
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the theory to a transversely isotropic medium with a vertical symmetry axis. The theory
is, however, valid for general anisotropic media at the expense of additional algebraic and
numerical complexity. In a general anisotropic medium the horizontally polarized shear
waves do not decouple from the compressional waves and vertically polarized shear waves.
Consequently, the motion is represented by a single 6 x 6 system of equations rather than the
separate 4 x 4(P-SV) and 2 x 2(SH) systems required for isotropic and transversely isotropic

media.

Numerical Results

In this section we numerically investigate the effects of transverse isotropy on the modal
dispersion, eigenfunctions and the coupling matrix B, for a realistic shallow water model.
We are in the process of coding the matrix Ricatti equations (48) and (49), and will present
results from the integration of those equations in a future paper.

Elastic anisotropy is a well established geoacoustic property of marine sediments®—¢. The
most common form of anisotropy observed in marine sediments is transverse isotropy(TI)
with a vertical axis of symmetry. In a TI medium propagation in all azimuthal directions
lying in planes including the symmetry axis is equivalent. In TI marine sediments with ver-
tical symmetry axes, horizontally polarized and horizontally propagating waves travel faster
than vertically propagating and vertically polarized waves. The primary mechanisms for
transverse isotropy in marine sediments are: 1. aligned cracks and pores; 2. recrystallization
of anisotropic minerals; and 3. compositional layering on a very fine scale. If isotropy is
erroneously assumed sound speed gradients are underestimated, sediment layer thicknesses
can be overestimated and shear velocity can be overestimated®. The most likely mechanism
for the observed transverse isotropy of sediments at the water-bottom interface is composi-
tional layering. Recrystallization of anisotropic minerals may be important for deeper lying

sediments, but to depths of at least 1km beneath the ocean bottom, compositional layering
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is believed to be the dominant mechanism®.

We have examined the effect of transverse isotropy on the mode structure and mode
coupling of a bottom interacting signal propagating in shallow water. The code used to
generate the eigenvalues, eigenfunctions and kinetic energy integrals for a plane layered
fluid-elastic TI medium was DISPER80%. The computations were carried out on a Sun
SPARCstation LX, mostly in double precision. At the highest frequencies it was necessary
to employ quadruple precision for the first few eigenvalues and eigenfunctions. Our shallow
water model was taken from Berge et al.?° who analyzed multi-component seismic data from
an experiment conducted in 21m of water about 10km east of New Jersey.

The data analyzed by Berge et al.?® were collected in 1986 by Roundout Associates Inc.
and Woods Hole Oceanographic Institution. Initial attempts at modeling the data assuming
isotropy of the bottom material were not considered adequate®®, and led to further modeling
efforts employing an anisotropic reflectivity program. The resulting TI models estimated
by Berge et al.? provided a good fit to their data and constrained four of the five elastic
parameters necessary to describe a TI medium. They did mot have enough resolution to
determine the compressional wave anisotropy and assumed c¢;; = ¢33 (A = C in Love’s®

notation).

In order to specify the anisotropy, we introduce the dimensionless parameters

__— _ . B F
and
C
/ = ]_— = _ —
¢ 6 = 1--, (53)

Values of




=0 and ¢ =0 (54)

indicate isotropy. The departure from isotropy increases as #' and/or ¢’ change from 0.
The dynamic stability of a transversely isotropic medium requires that certain conditions

be imposed on the elastic moduli (Auld®, Postma?®, Backus®!):

F?<C(A-N). (55)

The most plausible physical mechanism for TT with a vertical symmetry axis within the
interfacial sediments is fine compostional layering. This mechanism imposes the additional

constraints

C
C>

IV ol IV

F,
L,
N>L (56)

(Backus®!). A final independent inequality constraint for compositionally layered TI media

is

(A-L)(C—L) > (F+L)? (57)
(Postma®, Berryman®?).

The model, shown in Figure 2, consists of a 21m thick isovelocity water layer over 12.5m

of TI sediments, followed by 12.5m of isotropic sediments with a steep gradient in both
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compressional and shear speeds. The density of the sediments is taken to be constant at
2100kg/m3. The TI layer is characterized by 1’ = 0.012 and ¢’ = 0. The base of the model
is an isotropic elastic half-space with a shear speed of 1450m/s, a compressional speed of
3000m/s, and a density of 2400kg/m?>.

We have explicitly focused on the qP-qSV component of propagation in the sediments.
The excitation of horizontally polarized shear waves(SH) in the sediments by a propagating
acoustic signal in the water requires 3-D heterogeneity or anisotropy of a more general nature
than we treat.

Figure 3 illustrates the phase velocity dispersion for the model of Figure 2. The modal
phase velocities for the TT model are generally higher than for the corresponding isotropic
medium. This was apparently first noted by Stoneley®, and is a consequence of greater
material stiffness sampled by components of wave particle motion parallel to the bedding
plane. The difference between the modal phase velocities for the TI and isotropic media
increases with increasing frequency. As the frequency increases, the phase velocity of the TI
mode can approach the phase velocity of the next higher isotropic mode. This is also evident
in the group velocity curves shown in Figure 4. |

Despite a relatively small difference in the fundamental mode phase velocity between
the TI and isotropic models, the eigenfunctions are substantially different. Because the
eigenfunction calculation depends on the inverse of the eigen-phase velocity, small changes
in the smallest eigen-phase velocity can have significant effects on the computation of the
corresponding eigenfunction. This is also the reason for using quadruple precision at the
higher frequencies for the first few modes. DISPERS80 directly integrates the equations of
motion which become quite stiff at high frequencies. Efficient methods of generating the
fluid-elastic modes are important for high frequency applications.

The eigenfunctions for the vertical component of displacement at 10Hz and 20H z are

shown in Figures 5 and 6, respectively. Although it is not visible on the scale at which the
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modes are plotted, all eigenfunctions have been normalized such that the vertical component
of displacement is unity at the sea surface. The scale of the other three components of the
eigenfunctions is derived from this normalization. This choice of normalization is somewhat
arbitrary and merits discussion since the energy integrals and their partial derivatives (Fig-
ures 7(a-c), 8 and 9) are computed using this normalization. The purpose of Figures 5 and 6
is to illustrate the effect of the transverse isotropy on the eigenfunctions. The eigenfunctions
could have been normalized so the isotropic and corresponding T1I eigenfunctions had equal
energy, or so that they had equal peak amplitudes or equal amplitudes at the water sediment
interface. Although we have not computed the Green’s function for the medium, which forces
the selection of an explicit source location, we are assuming that the source and receiver are
located within the water column or at, or slightly beneath, the water-sediment interface. Our
chosen normalization emphasizes differences near the water-sediment interface. Modes with
a given surface amplitude will have very different amplitudes at the water-sediment interface
depending on whether the bottom is isotropic or anisotropic. Had we chosen a normalization
such that the peak vertical displacement was unity, correspending amplitudes in the water
column would be quite different. Our normalization yields eigenfunctions with different en-
ergies in isotropic and corresponding TI media, but because they have the same vertical
displacement at the surface, the differences in energy reflect the different amount of energy
input into the medium required to produce the same surface displacement. The contribution
of an individual mode to the Green’s function for the medium is directly proportional to
the mode amplitude at the chosen source depth. Therefore our choice of normalization will
emphasize differences resulting from shallow sources.

Comparison of eigenfunctions between isotropic and anisotropic media is somewhat prob-
lematic in any case, since there is no simple method of establishing correspondence between
the two. Because of the constraint relations among the elastic parameters listed earlier, it is

not possible to arbitrarily perturb one elastic modulus without corresponding perturbations
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to other moduli. Arbitrary perturbations to elastic moduli can destroy the symmetry of the
elastic stiffness tensor and produce unphysical results in calculations.

In the 10-20H z frequency range the water depth is approximately A/4, which means that
the bottom is near an acoustic radiation maximum. A propagating acoustic signal in this
band will thus be dominated by the fundamental mode guided along the water sediment
interface. For frequencies greater than approximately 7Hz for the isotropic medium and
11Hz for the TI medium, the phase velocity of the fundamental mode is less than the
sediment shear speed at the water sediment interface. The fundamental mode above the
threshhold frequency is therefore a Stoneley wave. At frequencies lower than the threshhold,
the mode is more properly termed a pseudo-Rayleigh wave.

It can be clearly seen from Figures 5 and 6 that the fundamental carries the most energy in
this frequency band. The generally smaller peak amplitude of the low order TT modes relative
to the isotropic modes is a consequence of the greater material stiffness for horizontally
propagating waves in the TI medium. As the mode number increases for a given frequency,
the eigenfunctions persist to greater depths in the structure. The fractional amount of modal
energy within the 10m thick TI layer decreases, so the influence of the anisotropy on the
eigenfunctions also decreases. Also, as the frequency of a given mode increases the component
of the mode in the bottom becomes more and more like pure SV. It can be seen from Figure
3 that as the frequency of a mode increases, its phase velocity approaches the shear speed
at the sediment interface. The compressional speed is much higher than the sediment shear
speed, and so the compressional component of the mode is evanescent, leading to the almost
pure SV behavior of the modes at high frequency.

Figures 7(a-c) shows the relative mode kinetic energy as a function of frequency for the

first three modes. The kinetic energy E,, of the m*® mode is
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En = w2/0 p (Wrwl + wlwl™) dz. (58)

The energy in the Stoneley wave peaks at around 11Hz. Berge et al.?® have plotted amplitude
vs. frequency for the unfiltered vertical component of the data from one of their profiles.
(Their Figure 7, and here reproduced as our Figure 7d.) The main features of the lower
frequency part of their spectrum are well represented by our kinetic energy plots. The
Stoneley wave peak at about 11Hz in Berge et al.’s®® data appears to be particularly well
modeled by our mode calculations. The low amplitude maxima appearing at 1.8z and 5H z
in Figures 7a and 7b, respectively, and the kink at approximately 8z in Figure 7c occur
at the knees of the modal dispersion curves(Figure 3). These knees occur at the frequency
at which a mode becomes trapped in the sediment layer. The mode dies out very rapidly in
the underlying halfspace, and the phase velocity drops abruptly towards the sediment shear
wave speed. The peak at 4.5Hz in Figure 7Tc corresponds to the very sharp I.ninimum in the
group velocity curve for m = 2(Figure 4). At this point the group velocity rises to meet
the phase velocity at the cutoff value. The comparisons between our model calculations and
Berge et al.’s?® data is not direct as we have not attempted to correct our modeling results
in such a way that would permit absolute amplitude comparisons with their experimental
data.

Berge et al.?® reported that their synthetic seismograms were quite sensitive to small
perturbations in the elastic modulus F' (c;3 in the abbreviated subscript notation). The
modulus F' affects the the propagation of qP and qSV at angles intermediate between the
horizontal and vertical in a TI medium with a vertical symmetry axis. In an attempt to
illuminate the sensitivity of a bottom interacting acoustic signal to sediment anisotropy, we
computed partial derivatives of mode energy with respect to a parameter 7'.

The dimensionless partial derivative of the mode energy is defined by
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(59)

En, 0@ En0n 0F E, OF

In Figure 8 the partial derivative Eq(59) is plotted versus 7' x 100 for the first three modes
at 10H z. Since a value of ' = 0 indicates isotropy, the anisotropy increases with increasing
values of the abcissa. The magnitudes of the derivatives for the first three modes are relatively
large and negative. The negativity of the derivatives indicates that the energy of the modes
will decrease with increasing anisotropy as measured by increasing 7. Again, we mention that
the vertical component of the eigenfunctions are all normalized to have unit displacement at
the surface.

Physically Figure 8 illustrates that, as the elastic modulus F' departs from its isotropic
value, less energy is required to produce the same vertical surface displacement. (In an
isotropic medium, F' corresponds to the Lamé parameter A.) Our perturbation reduces F
from its isotropic value, thereby reducing the stiffness of the medium somewhat at angles in-
termediate between the horizontal and vertical. The effect is the same as reducing the spring
constant of a mass-spring system. Less energy is required to produce a given displacement of
the mass suspended from a weaker spring. The relatively large dimensionless magnitudes of
the derivatives are a measure of the sensitivity of the eigenfunction, and hence the acoustic
signal, to anisotropic medium perturbations. Since the fundamental has the largest deriva-
tive, it will also be most sensitive to changes in F'. Although not shown in Figure 8, at 10H 2
for the mode m = 3, 0F,,/0n' is a very weak function of ' and nearly zero. The mode
m = 3 persists to greater depth into the bottom, and has relatively more energy both in the
water column and the underlying halfspace.

We also found for this model that a 2.4% change in 7’ could produce a 15% change in the
phase velocity of the Stoneley wave mode. Over the range of ' from 0 to 0.024, the phase

velocity of the fundamental increases from 145.57m/s to 169.67m/s.
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The frequency sensitivity of the mode energy for a single value of the anisotropy parameter
n' = 0.012 is illustrated in Figure 9 by a plot of 0F,,/0n' versus frequency. The main thing
to notice is, that over the 4Hz to 20H z frequency range depicted, the magnitude of the
derivative is increasing. A shallow water signal with a strongly excited Stoneley wave will
become more sensitive to the anisotropy with increasing frequency. Of course as the frequency
increases still further, the excitation of the Stoneley wave will drop off, and the influence of
the anisotropy on that part of the signal will also decrease.

We have not computed the corresponding partial derivatives with respect to ¢’, which
controls the P wave anisotropy, while holding n” = 0. This combination of anisotropy
parameters violates the condition expressed by Eq.(57), while the converse, i.e. ¢' =0 and
7' > 0 does not. We have, however, computed an example that shows the effect of both
n' > 0 and ¢’ > 0. As previously mentioned, Berge et al.?° did not investigate the effects
of P-wave anisotropy because their profiles were not long enough to resolve it. The length
of their long profile was about 200m. The P-wave anisotropy could be important for longer
propagation paths, since values as high as 40% have been reported in shale3¢, although 8%
to 14% is probably more typical of marine sediments?.

Figure 10 is a plot of the vertical displacement component of the fundamental eigenfunc-
tion for the isotropic case ' = 0 and ¢' = 0 (solid line), and for the two transversely isotropic
cases corresponding to ' = 0.012 and ¢’ = 0 (dashed line), and ' = 0.012 and ¢’ = 0.012
(dotted line). A value of n’ = 0.012 corresponds to Berge et al.’s?® long profile model (their
Table 1). The vertical components of the eigenfunctions are all normalized to have unit
displacement at the surface. The amplitude of the fundamental for the case ' = 0.012 and
@' = 0.012 lies between the the amplitude for the isotropic case and for the case ' = 0.012
and ¢’ = 0. The inclusion of this very modest amount of P-wave anisotropy draws the
appearance of the fundamental back towards isotropy. It may be possible to increase the

P-wave anisotropy enough so that there is essentially no detectable difference between the
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shapes of the isotropic and anisotropic eigenfunctions, but, in reality the P-wave anisotropy
near the water-sediment interface is likely to be even smaller than the value used for our
calculations®. The phase velocity of the fundamental for the case ¥ = 0.012 and ¢’ = 0 is
159.83m/s, which is actually slightly higher than the horizontally propagating qSV speed
(158.26m/s).

Our ultimate goal is to improve our ability to model and predict shallow water acoustic
signal propagation in a range dependent medium. We have computed the coupling matrix
By (Eq. 26) including the fluid-solid boundary interaction terms described in Eq.(34) and
Eq.(35) for the isotropic model (7' = 0 and ¢' = 0) equivalent to Berge et al.’s model (Fig.
11a,b); for the TT model of Berge et al.?® (n’ = 0.012 and ¢’ = 0) (Fig. 1lc,d); and for a
model (7' = 0.012 and ¢' = 0.012) incorporating the weak P-wave anisotropy (Fig. 1le,f).
The calculations were done at two frequencies 10H z and 20H z.

Berge et al.’s?® TI model is a range independent model. What we have computed is
the coupling matrix for a model with the same local vertical structure as Berge et al.?®
The absolute values of the coupling matrix |By,| in Figure-11 represent the effects of the
geometric medium properties only. The layer boundary slopes, hy, = dhy, /dz, have been set
equal to 1. All material parameter horizontal gradients such as p have been set equal to 0.
The absolute values of the elements of all six coupling matrices depicted in Figure 11 have
been normalized by dividing all elements by the largest matrix element of the entire set so
comparisons can be made between frequencies and between the isotropic and both T media.

As the frequency increases, the shallow water structure can support a greater m.lmber of
modes, so there are more modes to participate in the coupling. There is a preferred mode
pair for which the strongest coupling occurs in Berge et al.’s?*® model. At 10 Hz this is mode
pair {1,2} (Fig. 11c), and at 20 Hz the strongest interaction occurs for pair {4,5} (Fig. 11d).
Coupling strength decreases away from the diagonal and also away from the preferred mode

pair. The coupling of the preferred pair is stronger in the TI medium than in the equivalent
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isotropic medium. This latter effect illustrates the most striking difference between the TI
and isotropic media, and is a qualitative indicator of the difficulties that may be encountered
by ignoring sediment anisotropy when attempting to model range dependent shallow water
acoustic propagation. Away from the diagonal, other mode pairs participate nearly equally
in the coupling process. This indicates that a careful examination of the coupling matrix is
necessary before deciding on a truncated mode set to employ when synthesizing complete
propagating signals in a range dependent medium. Use of too small a mode set will alias
the coupling, and affect the amplitude and phase of a synthesized signal, but also, it may
occur that coupling is confined to a small number of model configurations leading to more
efficiency in calculations.

We have also computed the coupling matrix for a TI medium containing weak P-wave
anisotropy in addition to the S-wave anisotropy of Berge et al.’s?® model (Fig. 1le,f). The
addition of weak P-wave anisotropy to the model actually makes the medium appear more
isotropic for the case shown. It is, however, important to remember that Figure 11 represents
just a local snapshot of coupling interactions. To get a complete picture, the actual range
dependent structure of the medium must be imposed and Eqs.(48) and (49) for the reflection
from and transmission through the heterogeneous region must be solved. Because of the
almost order of magnitude difference between the shear and compressional wavelengths at
the water-sediment interface, the effects of the shear wave anisotropy will accumulate much

faster for a strongly bottom interacting shallow water acoustic signal.

E.Summary and Conclusions

We have summarized a coupled mode theory for fluid-elastic media that is formulated as
a coupled set of first order equations, and accounts exactly for the inhomogeneous boundary

condition due to range dependent interface irregularities!”. We have applied this theory to
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a realistic shallow water model derived from experimental data. A particular feature of this
work is the inclusion of transversely isotropic bottom sediments.

Our modeling results show that there can be significant qualitative and quantitative dif-
ferences between the eigenvalues and modes in shallow water models with an isotropic and
a tranversely isotropic bottom. These differences are also reflected in the mode coupling
induced by range dependence. The Stoneley wave at the water sediment interface is partic-
ularly sensitive to the transverse isotropy of the sediments. Conversion to Stoneley waves
has been shown to be an important loss mechanism by Hawker®. In light of the sensitivity
of the Stoneley waves to the transverse isotropy of the bottom, and the apparent ease with
which they can be excited by bottom roughness’, some care should be taken regarding inter-
pretations of strongly bottom interacting acoustic signals derived from models that assume

isotropic sediment properties.
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Appendix: Elastic Moduli Matrices for a Transversely Isotropic Medium

We list the elastic moduli matrices C;; and Q;; used in the calculation of the coupling

matrix By, Eq.(26).

1/JA 0 0
ci'l=10 1N 0
0 0 1/L

0 (A-2N)/A 0

ChlCy =

—
S
(==

The @;;, defined as

e -1
Qij - Cz] - CilCu Clja
are:

0 0 0
Rr=]0 4N(A-N)/A 0
0 0 L

00 0

Ru=|0 0 2NF/A

0 L 0
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.

When A=C=X+2u, L =N =y, and F = ) the medium is isotropic.
The relationship between the notation of Love® and the abbreviated subscript notation for

the elastic moduli of a TI medium is

A =11, F=(313, 02033, L=C44, NZC(;ﬁ.
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Figure Captions

Figure 1. The figure illustrates the geometry of the range dependent medium modeled
by the coupled Ricatti equations Eq.(48) and Eq.(49). The range dependent region (II) is
sandwiched between two plane layered (range independent) regions (I) and (III) that need
not be the same. The integration of Eq.(48) and Eq.(49) proceeds backwards from the point
ZR to the point zj,.

Figure 2. The transversely isotropic shallow water model of Berge et al.?® (Their
Tablel.). The 12.5m thick sediment layer immediately below the water sediment inter-
face is transversely isotropic. We have terminated their model with an isotropic half-space
with a shear speed of 1450m/s, a compressional wave speed of 3000m/s and a density of
2400kg/m?3.

Figure 3. Phase velocity dispersion curves for the shallow water model of Fig. 2.
Note that the phase velocities in the TI medium are generally higher than in the equivalent
isotropic medium. As the frequency increases, the phase velocity of a TI mode can approach
the phase velocity of the next higher isotropic mode. This is lalso true of the group velocities
plotted in Fig. 4.

Figure 4. Group velocities of the first three modes for the model shown in Figure 2.

Figure 5. The vertical displacement eigenfunctions for the first four modes at 10Hz.
Notice that for mode 3, the isotropic and TI vertical displacements are virtually identical,
but that the amplitude of the TI displacement in the halfspace is slightly greater than the
isotropic displacement. Modes are normalized to have unit vertical displacement at the water
surface. At 10Hz, the signal is dominated by the fundamental (Stoneley) mode.

Figure 6. The vertical displacement eigenfunctions for the first four modes at 20Hz. The
isotropic and TI modes are distinct. In fact, although not shown here, there are significant

differences between the isotropic and TI modes for the first five modes.
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Figure 7. Kinetic energy as a function of frequency for the first three modes (a-c).
These match quite well the lower frequency part of the spectrum of some shallow water
data (d) shown by Berge et al.?® (Their Figure 7, used by permission of Blackwell Scientific
Publications Ltd.) The Stoneley wave peak at about 11 Hz in Berge et al.2® appears to
particularly well modeled by our mode calculations. Note that the frequency ranges of (a~c)
and (d) are not the same.

Figure 8. Nondimensional partial derivatives of mode energy with respect to the pa-
rameter 77'. The negativity of the derivatives indicates that the mode energy for the first
three modes decreases upon departure from isotropy.

Figure 9. The partial derivative of the fundamental mode energy with respect to 7
evaluated at 7' = 0.012 as a function of frequency. Note that the absolute value of the
magnitude of the derivative generally increases over the plotted frequency range. Indicating
an increasing sensitivity with frequency of the fundamental mode to the anisotropy. A value
of ' = 0.012 corresponds to the best fitting TI model for the long profile data of Berge et
al.’s®® (their Table 1).

Figure 10. Vertical displacement component of the fundamental eigenfunction for the
isotropic medium(solid line, phase velocity= 145.57m/s), and for TI media characterized by
n' = 0.012(dashed line, phase velocity= 159.83m/s) and 7/ = ¢' = 0.012(dotted line, phase
velocity = 153.73m/s). They have all been normalized to unit displacement at z = 0. The
frequency is 10H2. The speed of horizontally propagating qSV waves (1/L/p) at the water
sediment interface is 158.26m/s.

Figure 11. The absolute value of the elements of the coupling matrix B,, Eq.(26) for
the model in Fig. 2. Layer boundary slopes A have been set equal to 1, and all horizontal
material parameter gradients such as p have been set to 0. This emphasizes the effects of
geometric (boundary) heterogeneities. The absolute values of the elements of the six coupling

matrices have been normalized by the largest matrix element of the entire set so comparisons
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can be made between frequencies and between isotropic and TI media. The array elements
have been normalized so that dark red is unit coupling and dark blue is zero coupling. The

diagonals have been purposely left blank to reflect our choice of phase for the local modes

(Eq.(42).
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SUMMARY

Elastic wave propagation in strongly scattering media is described by an energy diffusion
equation derived directly from the coupled mode equations. These equations provide an
exact representation of the displacement-stress field in 2-D heterogeneous media. By allow-
ing the mode spacing to approach zero, the continuum limit of the modal representation of
the elastic wavefield is derived. The final expressions require neither the location of closely
spaced eigenvalues nor construction of eigenfunctions. All assumptions and approximations
must be explicitly stated and implemented in the derivation of the energy diffusion equation.
Strong forward scattering is assumed to dominate. The energy diffusivity is a range and fre-
quency dependent functional of the displacement-stress field components and the horizontal
gradients of the medium properties including anisotropy. The diffusivity functional is de-
rived directly from the continuum limit of the mode coupling matrix; it is essentially the
spatial autospectrum of the coupling matrix weighted by a function describing the density
of modes in spectral space. The approach presented in this paper is in contrast to energy
diffusion equations derived from radiative transfer theory in which the the diffusivity must
be specified separately in an ad hoc manner. The diffusivity functional is computable from
any wavenumber integration type code that generates, or can be modified to generate, the
depth dependent Green’s function for a fluid-elastic medium. Although our energy diffusion
equation is range dependent, the computation of the diffusivity depends on local medium
properties and field values for a plane layered medium. An additional difference between
the diffusion equation of this paper and previously published treatments of elastic energy
diffusion is that this paper describes energy diffusion in spectral space, e.g. slowness, as a
function of range rather than diffusion in physical space as a function of time.

Key words: coupled local modes, energy diffusion, forward scattering, random media,

surface waves.




1 INTRODUCTION

Deterministic models are quite successful for modeling the large and intermediate scales of
the structure of the earth. The scales of the deterministic problems are defined by inhomo-
geneities that are large compared to the wavelength of the seismic or acoustic waves. Initially
coherent signals tend to retain their coherence over long propagation distances. When the
scale of the inhomogeneities is small compared to the wavelength and are randomly dis-
tributed, propagating signals are scattered, and become progressively more incoherent as
the range from the source increases.

A number of different approaches have been used to model the scattered wavefield de-
pending on the spatial density and properties of the inhomogeneities in the medium. For
widely spaced scatterers, the Born approximation, which does not conserve energy, has been
used (Wu and Aki 1985a, Snieder 1986). (The definition of “widely spaced” depends on
the mean free path, correlation length, and frequency.) For more closely spaced scatterers
various multiple scattering formulations have been proposed (e.g. Wu 1985). Phase screen
methods have recently been extended to to the P-SV problem (Fisk & McCartor 1991; Fisk,
Charette & McCartor 1992). Phase screen methods have also been combined with the Born
approximation to model propagation in media with large numbers of imbedded scatterers
(Wu 1994). When the scatterer density is so high that all the energy is scattered, phase in-
formation is lost and the field is completely incoherent. In this case radiative transfer theory
has been applied to derive an energy diffusion equation. The application of radiative transfer
theory to seismic problems was first suggested by Wesley (1965), followed by applications
to lunar seismograms by Dainty et al. (1974), Dainty and Tokséz (1977), Nakamura (1977)
and Oberst (1985). Wu (1985) applied radiative transfer theory to study the coda of local
earthquakes. In this paper a new method of modeling energy diffusion in strongly scattering

media is described. Although we also arrive at a diffusion equation for the elastic energy,




there are a number of differences between the theory presented in this paper and radiative
transfer theory. The main differences are summarized in the next three paragraphs.

Radiative transfer theory is a phenomenological theory that starts with an assumed
seismic energy density defined as an integral over all space. Substitution of the energy
density into a continuity equation derived from energy conservation leads to a diffusion
equation describing the redistribution of energy in space and time. The derivation of the
diffusion equation depends on a number of implicit as well as explicit assumptions. The
diffusivity, which should contain details about the physical properties of the scatterers, is
specified in an ad hoc manner based on plausibility arguments about the size, distribution
and scattering strength of the imbedded inhomogeneities and partitioning of energy between .
The model that is either explicitly or implicitly assumed is generally of a random distribution
of scatterers imbedded in a homogeneous background. An advantage of radiative transfer
theory over the theory presented in this paper is that it is inherently a three dimensional
theory, and backscattering is automatically accounted for.

We derive an energy diffusion equation directly from the exact coupled mode represen-
tation of the solution to the elastic wave equation. This makes the theory of this paper
a physically based theory rather than a phenomenological theory. The assumptions and
approximations must be explicitly stated in order to extract a diffusion equation from the
starting coupled mode representation. One key assumption is that backscattering is ne-
glected. Because the scattered energy is assumed to be forward scattered, our theory is most
appropriately applied to scattering from velocity heterogeneities which affect the wavefield
phase. Backscattering produced by strong impedance heterogeneities is not modeled by this
approach (Wu & Aki 1985a). Whereas previously published treatments of elastic energy
diffusion model energy diffusion in space and time, we model energy diffusion in spectral
space as a function of propagation range.

As shown below, the diffusivity arises from the continuum limit of the mode coupling




matrix, and it contains all the interaction physics and medium properties so that the back-
ground medium and imbedded inhomogeneities are treated on an equal footing. The coupling
between the compressional and shear waves is automatically included. The frequency de-
pendence of the diffusion process and correlations of the horizontal gradients of the elastic
moduli, density and layer boundaries appear explicitly in the diffusivity. All the required
quantities are readily computable.

The coupled mode equations for an elastic medium are reviewed in Section 2. From
the coupled mode equations, a coupled energy equation is derived, and then reduced to an
energy diffusion equation. The derivation is 2-D and valid for general anisotropic fluid-elastic
media.

In Section 3. an approximate solution of the coupled mode equations in the forward scat-
tering limit is described, to be used later in the derivation of the coupled energy equations.

In Section 4. energy conservation in a range dependent medium, and its relation to the
anti-Hermiticity of the mode coupling matrix is discussed.

In Section 5. the coupled energy equations are derived from the coupled mode equations.
The phase information carried by individual modes is relinquished for a description of the
evolution of the average energy of a mode propagating in a range dependent medium.

In Section 6. the energy diffusion equation is derived from the coupled energy equations.
The energy diffusivity functional is shown to be essentially the spatial autospectrum of the
coupling matrix weighted by the local density of modes in the random medium. The diffusion
equation can be transformed to a Schrodinger equation, which may offer some advantages
for numerical implementation. However, the form of the potential is somewhat complicated.

In Section 7. an initial condition and physically reasonable choices for two boundary
conditions are discussed. The boundary conditions must be satisfied in spectral space, rather
than physical space.

In Section 8. solutions to two elementary spectral diffusion problems are presented and
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discussed. The solutions are represented as Fourier series of the energy spectrum in p, —
space. The homogenization of the spectrum with increasing propagation distance through
the scattering medium is readily apparent upon examining the elementary solutions. The

final two sections include a brief discussion of attenuation and our conclusions.

2 THE COUPLED MODE EQUATIONS

Seismic wave modeling in fluid-elastic media with variations in 2 and 3 dimensions is com-
plicated by the non-separability of the spatial independent variables of the equations of
motion. However the normal mode representation can still be used with modification. A
local separation of the equations of motion is effected by representing the wavefield compo-
nents as the superposition of a set of range varying basis functions, the “local modes,” with
range dependent amplitude and phase. The elements of this local basis are the modes of the
plane layered structure that corresponds locally to the range dependent structure in terms
of material properties and layer thicknesses. The derivation uses the coupled mode theory of
Maupin (1988), which is an extension to elastic media of the acoustic coupled mode theory
of Odom (1981, 1986). Kennett’s (1984) theory uses the modes of a reference structure; this
theory will suffer in accuracy if the boundaries of the reference structure diverge from those
of the actual structure. Bostock (1992) has extended Kennett’s reference structure method
to 3-D, and Tromp (1994) has made a partial extension of the local mode method to 3-D.

Maupin’s (1988) theory is summarized here, since it forms the basis of the derivation of
the energy diffusion equation. The theory is valid for solid-solid as well as fluid-solid and
fluid-fluid boundaries. It is also valid for general anisotropic media.

A Cartesian coordinate system is used where the z axis ( or z; axis) is the direction of
the range dependence, and z-axis (or x3 axis) is the depth axis and taken to be positive

downward. The medium is assumed to be 2-D, laterally heterogeneous and composed of n
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layers. The layers may have non-planar interfaces h,(x), where the free surface is designated
ho(z). Material properties, the density p(z, z) and stiffnesses ¢;;x(z, z), may vary smoothly
in both the z and z directions.

For the elastic moduli, the matrix notation of Woodhouse (1974) is employed such that
(Cij) = Crity- (1)

The equations of motion for an elastic medium are

2

Pom = Vit +1, (2)

where p is the density, f is an external force and the traction vector t is defined by

t; = Cy (g%) : (3)

The displacement is Fourier transformed with respect to ¢, as

w(z,z,w) = /+00W(:17, z, t)exp(—iwt)dt. (4)

00
The same symbol w is used for both the transformed and untransformed displacement. The
equations of motion for a 2-D heterogeneous medium, rewritten to isolate the derivatives

with respect to z, the propagation direction, on the left hand side are

AR o { ’ } (5)
= Au+ n
oz w0 U[thaé(z ~ ha(2))

with the interface conditions

[t3]n = [W], = 0. (6)

The square brackets [-],, indicate the jump of the enclosed quantity across the n'" interface,
taken from bottom to top. The free surface condition for an elastic (fluid) medium is that

the traction (pressure) vanishes and a radiation condition is assumed as z — oo. The
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4-component vector u = (w,t)T where w = (w,,w,) and t = t; = (Tuq, Ty;), and the

differential operator A is

—CR'Cisd Ciit
A = ’ (7)
—pw? — £ (Q33%) —2CyCr!

and @Q;; = Cy; — Cy,C'Cy;.

Continuity of the traction normal to a sloping interface in the laterally heterogeneous
medium is equivalent to a jump in traction along the vertical axis. Maupin & Kennett
(1987) transformed the traction discontinuity in the interface boundary conditions to a lo-
calized volume force located along the interface by applying a representation theorem for
elastic media (Burridge & Knopoff 1964). The resulting equivalent volume force becomes the
source term on the right hand side of eq. (5), and the interface boundary conditions become
homogeneous.

Egs. (5) and (6) are a first order system of inhomogeneous equations with homogeneous
boundary conditions that formally describes the evolution of the stress-displacement fields
along the propagation direction. The solution to this system is expressed in terms of coupled
local modes. These local modes, defined below, are the eigenfunctions of the range indepen-
dent medium that locally share the same depth dependence as the range dependent medium.
Hence locally at some point z; in range, the density p(zo, z) and the elastic moduli C;;(z,, 2)

are functions of depth only so that

p(x0,2) = p(z) and Cij(zo, 2) = C;j(2). (8)

The wave propagation problem for a 2-dimensional range dependent medium can be
solved exactly in terms of the local eigenfunctions of the range independent medium. These

eigenfunctions are the homogeneous solutions to eq. (5) with homogeneous boundary con-
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ditions eq. (6). The boundary conditions at the irregular interfaces are satisfied exactly by
including the effective source term in eq. (5). No approximations have been made (Maupin
1988).

Local solutions of the equations of motion (eq. (5)) which depend parametrically on z

are represented as

u(z,, 2)exp(—ik"(z,)z) (9)

satisfying

— k" (z,)u" (20, 2) = Au"(z,, 2) (10)

and the homogeneous boundary conditions [w"], = 0 and [t}], = 0 across interfaces. The
horizontal wave number in the z-direction is &, and taken to be real.
Maupin (1988) introduced the following Hermitian scalar product between two local

eigenfunctions of index r and gq.

(uf,u") = z'/ooo(wq*t’" —t"w")dz (11)

where * indicates complex conjugation. The local modes are orthogonal with respect to this

scalar product at fixed values of frequency and p. The local modes are normalized such that

(u?,u") = 4y (12)

Thus, they all carry the same energy flux across planes z = constant.

The coupled local mode technique seeks a solution for the equations of motion as a coupled
set of local modes whose amplitudes and phases vary with laterally varying structure. The
evolution of the range dependent amplitude determines how energy is exchanged between

modes as a signal propagates through the medium. The solution of the equations of motion
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for the stress-displacement field in the range dependent medium is thus represented as the

sum over local modes
W z Wq('r) Z)
u= { } - gq;cq(x) exp (—z’ /0 kq(g)dg) { W } (13)

where k(£) is the local horizontal wavenumber at = &. The local modes satisfy the
homogeneous boundary conditions, eq. (6), of a plane layered medium, and are therefore
readily computed.

The derivation of the evolution equation for the range dependent amplitude coefficients
c-(z) proceeds by substituting the representation eq. (13) into the equations of motion eq. (5).
The scalar product of the resulting expression is formed with the displacement-stress vector

of the ¢gth mode u?, yielding:

%
oz

= Bgcr, (14)
which describes the evolution of the range dependent amplitude coefficients.

The explicit form for the coupling matrix B, has been reproduced for reference from
Maupin (1988), and is listed in the Appendix (eq. (Al)). The coupling matrix By, is com-
posed of products of components of the displacement-stress field, their vertical derivatives
and lateral gradients of the medium properties. There are no range derivatives of the lo-

cal eigenfunctions. The explicit expression for the coupling matrix eq. (A1) describes the

coupling in a fully anisotropic 2-D medium.




3 APPROXIMATE SOLUTION OF THE COUPLED MODE EQUATIONS

In this section we derive an approximate solution of the coupled mode equations that will
be required for the derivation of the coupled energy equation in the next section.
For a complete description of propagation in a general heterogeneous medium, the evolu-

tion eq. (14) for the mode amplitudes must be solved for both forward(+) and backward(—)

5 (¢ (@) Btt(z) Bt (z) ct(z)
o) oo oo lbn) @
¢ (z) B~*(z) B (z) c (z)

where ¢* and ¢~ are n-dimensional vectors whose components are the amplitude coefficients

propagating modes.

of n forward and backward propagating modes. If we specify a geometry defined by a
heterogeneous region sandwiched between two homogeneous (plane layered) regions and
assume a signal incident from the left onto the heterogeneous region, eq. (15) defines a 2nx2n
boundary value problem for the amplitudes of the forward and backward propagating modes.
The boundary values are ¢*(z) known at £ = z, on the left side of the heterogeneous region,
and ¢ (zg) = 0 on the right side of the heterogeneous region at x = zg. Figure 1. illustrates
the medium geometry and various length scales employed in this paper.

We now assume that energy is scattered predominantly in the forward direction so that
backscattering can be neglected. The forward scattering assumption also implies that this
theory is applicable to scattering from medium heterogeneities that are predominantly ve-
locity heterogeneities rather than impedance heterogeneities. Backscattering is controlled
primarily by impedance contrast (Wu & Aki 1985a,b).

Applying the forward scattering assumption eq. (15) can be written

+
8cq

L = B (2)ei (2) (16)
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which can be approximately integrated (Marquering & Snieder 1994)

i@ = oo ([ By &) w0) (1)

The validity of this approximate solution to eq. (16) requires that the commutator of B™*
and B+ /0x be small. A derivation of the approximate solution eq. (17), and an excellent
discussion of the subtleties involved is given by Marquering & Snieder (1994). We represent

the matrix exponential in eq. (17) by its power series expansion (e.g. Golub & Van Loan

1983, p. 396)
00 Ajr
exp(Agr) = D = (18)
i=0 J-
so that eq. (17) becomes
N 1N N
e (x) = cq(wr) + > Ageer(zr) + 3 S Ap > Avses(zr) + ... (19)
r=0 r=0 =0
where
Ap = [ BEH(E) de. (20)
zrL

Marquering & Snieder (1994) have used the same power series representation of the matrix
exponential (eq. (19)) to derive a very efficient algorithm for the solution of the coupled mode
equations in the forward scattering limit that takes second order coupling interactions into
account. In our derivation of the coupled energy equations below, we retain only the first

two terms of eq. (19).
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4 ENERGY CONSERVATION

As indicated by eq. (12), the local modes are normalized to carry the same energy flux across
planes z = constant. We can obtain a statement of energy conservation for a lossless range
dependent medium by substituting the local mode representation of the stress displacement
field eq. (13) into the scalar product eq. (11) and setting the derivative with respect to =
equal to 0. A concise proof of this statement of energy conservation for the general 3-D
problem has been given by Tromp (1994). Carrying out the indicated differentiation and

employing eq. (14) yields

0 0
i = = 2
() = P ley(s)]

q

= > (a—cgii)c; (z) + ¢g(x) 8(’39(;))

q

= Y (B + B},) co(z)c; (=)

9.7

_ (21)

We have used the fact that

S (o) (S Bl - To) (S Be@). (22)

T r q

since the mode indices {g, 7} are summed over the same set.
The only way for eq. (21) to be satisfied generally is for the coupling matrix to be anti-

Hermitian, i.e.

By = B, (23)

This anti-Hermiticity is a necessary consequence of energy conservation in a lossless medium.

It can be seen by inspection that the coupling matrix By, given by eq. (A1) is anti-Hermitian.
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5 THE COUPLED ENERGY EQUATIONS

As the frequency increases, the discrete mode spacing becomes fine enough that the
displacement-stress field may be treated as a continuum of trapped modes. Random fluctu-
ations of material parameters and layer thicknesses and boundary slopes can cause energy
to be exchanged among modes. Within the limits of a very well defined set of assumptions,
it is possible to derive a diffusion equation to describe this energy exchange. If the medium
consists of densely packed scatterers imbedded in a matrix, and if the field is characterized by
a large number of closely spaced modes, all the propagating energy is scattered energy. This
leads us to relinquish information about individual mode phases in exchange for a descrip-
tion of the average energy transport. Marcuse (1974) derived coupled power equations for
propagation in an optical waveguide with random rough boundaries. While our derivation of
the coupled energy equations roughly parallels that of Marcuse (1974), there are differences.
Marcuse (1974) assumed that the coupling matrix By, was independent of range, which is
not necessary. Another difference is that Marcuse’s final results for the energy diffusivity
depend on the autocorrelation of the boundary function itself. Our results depend on an au-
tocorrelation functional on the horizontal gradients of the boundary functions and material
parameters.

Referring to eq. (21), the average energy flux of local mode g across planes x = constant

is

E,= <cqcz> . (24)
The angle brackets (-) indicate an ensemble average taken over statistically similar realiza-

tions of the medium.

Differentiating eq. (24) with respect to z, we get
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OF, dcg ac;
(o) o3) e

and substitute eq. (14) to get

OB, _ > <qu (z)er (z) C; (x)> + cc, (26)

e
where cc refers to the complex conjugate of the first expression on the right hand side of
eq. (26).

The displacement-stress field in a random medium characterized by heterogeneities dis-
tributed over a range of scales is statistically nonuniform. We deal with this statistical
nonuniformity by dividing the medium into a sequence of approximately statistically uni-

form segments of length

L(w)=z~—1" (27)

for a specified frequency band (Wu & Aki 1985b). We also assume that the frequency
dependent correlation length scale of the medium heterogeneities I(w) is small compared to

the statistically uniform region (Fig. 1)

lw) < L(w). (28)

We assume that over the region of approximate statistical uniformity £(w), we can ap-
proximate the forward scattered mode amplitudes ¢,(z) and ¢,(z) with the first two terms
from the power series expansion of the matrix exponential eq. (17). So using the first two

terms of eq. (17) substitute

and
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c(z) = c;(z') + ZO Ar (z)cr(a")

(30)

for ¢, and ¢ in the first term of eq. (26). Corresponding substitutions are made in the

complex conjugate term, yielding

JE,

ox

+ cc.

(31)

Because of the double summation over r and n, the elements of the product terms in eq. (31)

commute without requiring the interchange of indices.

By making several assumptions about the statistics of the random heterogeneities, eq. (31)

can be reduced in a systematic way to yield the coupled energy equations. We assume that

the range dependent displacement-stress field amplitudes ¢;(z) are slowly varying over the

correlation distance /(w) of the medium properties. This permits us to express the ensemble

averages of the products in eq. (31) as products of the ensemble averages (Bendat &Piersol

1986, pp. 465-471)

OE,
oz

>~ (Byr(2)) (cr(a)e; (2'))
> (Byr(®) Arn(@)) {en(2)} (=)

rn

> (Bor (@) A2, (2)) {er (2)c5(2)

r

Z <qu(x)Arn (2)Agr(z)) {Cn (x,)c: (37,))

N

CC.
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The coupling matrix terms By, and the horizontally integrated matrices 4,, and A},
are sums of terms directly proportional to the horizontal gradients of the density (9p/dz),
stiffness tensor (dcijr/0x) and layer boundary configurations (0h/0z). We assume that
the distribution of horizontal gradients of these medium properties within the ensemble of

statistically similar models are zero mean so that

(BQT> = <Arn> = <AQT> =0. (33)

The zero mean assumption allows us to eliminate the first term on the right hand side of
eq. (32). We have already assumed that the coupling is weak enough to approximate the
matrix exponential eq. (17) by the first two terms of its power series. The third term on the
right hand side of eq. (32) will therefore be much smaller than the second and third terms,
and we ignore it.

The second term in eq. (32) contains a double summation over r and n. Physically, this
term includes the effects of all modes n which couple to all modes r which then couple to
mode q. We make the assumption that the main contribution to the double summation
comes from modes n = ¢. This is consistent with the previous assumption that the mode
amplitudes can be expressed by the first two terms of the series expansion of the matrix
exponential.

After dropping the first and fourth terms on the right hand side of eq. (32), eliminating
the summations over n in the second and third terms, and using the anti-Hermiticity of By,

we have
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The remaining terms proportional to { B,,(x)A%.(z) ) can be rewritten using the definition
g q qr g

of A, (eq. (20)), so that the coupling terms form the autocorrelation of the coupling matrix
(Br@45,() = [ (Bul®)By(a")) da”

where

Rar(T) = (Byr(2) By, (2 — 7)) (36)

is the autocorrelation of the coupling matrix, and

rT=x—-21". (37)

The lower limit of the integral has been extended from z’' to —oo because we assume that

R4 (7) contributes only over the distance of a medium correlation length {(w), and

lw)y<z-—2. (38)
Since By, is evaluated at = and the integration for A, is over 2", we are able to take By,
inside the integral, and introduce the correlation variable 7. The complex conjugate term
contributes the complex conjugate of the integral term we already have. The final result for

the coupled energy equation is then

OF,
T = StulB— ) (39)
where
—+o0
byr = . Ry (T) dr, (40)




the symmetric energy coupling matrix, is essentially the spatial autospectrum of the square
of the coupling matrix By. It can be seen from eq. (Al) that the leading order phase
dependence of the integrand of eq. (40) will be exp(i(k? — k")7) which gives by, the form of
an autospectrum to leading order.

Referring to eq. (A1), it can be seen that B, is a sum of terms made up of field com-
ponents, the vertical derivatives of the field components and horizontal derivatives of the
field components. If we write B, to emphasize the horizontal derivatives of the material

properties,

g 1 {Bmap(x) . B(S?ng@%@}exp(i [ - wde), (a)

where f(c;jri(z)) is used to indicate any of the @Q; or matrix products of the Cj;, and if
we can assume that B,S,l,), Bgf) and Bgf) are constant over the statistically uniform regions
L(w), we find that by, is proportional to a sum of terms consisting of the spatial autospec-
tra and cross-spectra of dp(z)/0z, Of(cijm(z))/0z and Oh(z)/0x. If we are able to make
this approximation, specification of the random properties of the medium is reduced to the
specification of the corresponding autospectra and cross-spectra of the medium properties.
In addition the coupling matrix will only have to be computed once for every statistically

uniform segment.

6 THE ENERGY DIFFUSION EQUATION

Eq. (39) is an infinite set of coupled first order equations that describes the evolution of
mode energy in a random medium with a correlation function that can be computed once
the form of the heterogeneities has been specified. Eq. (39) is not particularly useful in the

form given because the eigenvalues of the local modes in the random medium must be found,
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the eigenfunctions must be calculated and the range dependent energy coupling matrix must
be computed before eq. (39) can be solved. By employing several additional assumptions,
we can reduce eq. (39) to a diffusion equation for the diffusion of energy in the random
medium. Our derivation parallels that of Gloge (1972), who derived a diffusion equation for
the propagation of energy in a dielectric optical waveguide with random index of refraction
perturbations.

The elements of the coupling matrix eq. (A1) depend on the inverse of the eigenwavenum-
ber spacing. Tromp (1994) has shown that the the relative coupling strength between modal
overtones is inversely proportional to the square of the local wavenumber spacing

dcq

oc [k — ke[ (42)

q

so the strength of the energy coupling is therefore

0F -
Fq (0.6 |kq - ]CT-| 4. (43)

q

As the frequency increases, the eigenwavenumber spacing decreases. The (Ak)~* depen-

dence of the energy coupling indicates that the coupling interaction between immediately

neighboring modes will be much stronger than more distant intermode interactions. If we

assume that nearest neighbor coupling between modes comprises the dominant intermode
interactions, eq. (39) can be written as the differential-difference equation

OB bysralFyos = Bo) + g (Bt — By (44)

As the frequency increases, the mode spacing becomes smaller and smaller. In the limit

in which the mode spacing goes to zero, the mode spectrum is represented by a continuum,

and the differences in eq. (44) can be replaced with differentials




This allows us to rewrite eq. (44) as

oF,
- = bq+1,q(Eq+1 - Eq) - bq,q—l(Eq - Eq—l)

oz
O0E,11 0E, )

= Aq (bq_H’q‘-—(T - bq’q_1a—q (46)

Finally we collapse the final difference in the same way to get

-3}

We have dropped the second subscript on b, and set Agq = 1.

The mode number ¢ is not particularly useful as the continuous independent variable.
However at this point we have quite a bit of flexibility for the choice of continuous inde-
pendent variable to use as we take the continuum limit. Possible choices include the local
horizontal wavenumber k,, the local horizontal slowness in the propagation direction p,g,
the local phase velocity vq”h or the local ray equivalent angle 6,. A final choice would be
made according to application, mathematical perspective one would like to take and ease of
numerical implementation. In any case we need to be able to relate the mode number ¢ to
the continuous independent variable of choice. If we let A represent any appropriate spectral

variable we may want to choose, then the local dispersion relation

F(rq) =0 (48)

provides an implicit relation between the mode index q and A. Differentiation of eq. (48)
provides the needed relation to transform the derivatives with respect to ¢ in eq. (47) to
derivatives with respect to A.

Our final result is then
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'
.

where

0
o(g, \,z) = a—?\

is the local mode density function, and

b(A, z) = /+OO R(r) dr,

—00

which is the continuum limit of eq. (40) described below.

(50)

(51)

The form of b(\,z) follows from the continuum limit of eq. (36) and eq. (Al). The

coupling matrix By, (eq. (A1)) is a function of the difference of the eigenwavenumbers Ak =

(kq - kr)

1 .
— p(Ak,x)
By, Ak(@) B, (x)e )

(52)

where B,, is the part of By, that does not depend on Ak and 9(Ak, ) is the phase. We can

express Ak(z) in terms of the mode density function p(g, A, z) as

oA 9k
Y54 o)
ok

— v o—1

Ak =

Now rewrite the autocorrelation function eq. (36) as

where
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B(z) = (W)) o0, ), 2)B(z) @) (55)

and

B(z—7)= (M> o(g, N,z — 7)B*(x — 'r)e_"(Aq‘Z(””—T)). (56)

The tildes over 9(z) and 9(z — 7) indicate that the Ak term in the phases has also been
replaced by the expression given in eq. (53). Allowing the mode spacing to approach zero,

and setting Aq = 1 in eq. (54), we get

by = [ Rep(r)dr [ {B@)E @~ )

oo oo
= [ R@)ar
= b\, z). (57)
If it occurs that
o(q, M\, z) = o(q, A,z — T) ~ constant, (58)

for all z and ), then p? can be factored from (), z) and canceled by the inverse factors
on the right hand side of eq. (49) to eliminate the mode density from the energy diffusion
equation. Also note that if we choose A = k then d\/0k = 1, and if we choose A = p, then
OM\/0k = 1/w. Either of these choices for A will significantly simplify the computation of
b(A, x).

Eq. (49) is a parabolic partial differential equation that describes the range dependent
diffusion of energy in A-space in a perfectly elastic 2-D random medium that is so strongly
scattering that all the energy is scattered energy. The diffusivity b(A,z) is a range and

frequency dependent continuous functional of the displacement-stress field and the range
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gradients of the medium properties. Because we have taken the continuum limit in the
derivation of eq. (49), the diffusivity b(A,z) can be computed using any program, e.g. re-
flectivity or finite difference, that can solve for the displacement-stress field as a function
of depth in a plane layered medium. The field quantities in the coupling matrix By, from
which the diffusivity b(A, z) is derived, are the field quantities for a plane layered medium.
The range dependence enters through the range gradients of the medium.

In order to solve eq. (49), we must be able to evaluate g(g,A,z). There are several
special cases for which p(g, A\, z) can be evaluated analytically subject to some additional
approximations. From a practical numerical standpoint, we need to know the density of
modes in the region of interest in the spectral space of choice (k, p,, vP", 6, etc.). This is
straightforward for SH waves and acoustic waves which are governed by a second order scalar
differential equation that defines a Sturm-Liouville problem. The eigenvalues are predictably
and evenly spaced, and it is relatively straightforward to determine the density of eigenvalues
in some region of spectral space. Determining the density of eigenvalues for the higher order
P-SV problem is more difficult because of their irregular spacing.

However, Woodhouse (1981, 1988) has been able to construct a function from the minors
of the propagator matrix that exactly yields the density of modes in a specified region of
spectral space for the general P-SV problem. The evaluation of this function requires only
two integrations of the system of differential equations for the P-SV problem. The existence
and form of this function were conjectured quite some time ago (Woodhouse 1981), and
a complete proof was given just recently (Woodhouse 1988). An effective algorithm for
computing the mode density function has been given by Gomberg & Masters (1988). We
discuss the more general P-SV case first, and then the cases for which it is possible to find
an approximate analytical expression for o(q, A, ).

Woodhouse’s (1988) function is
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v(Aas Ap), (59)
which is the number of eigenvalues(modes) of an n x n system of equations between the
values A\, < Ap. We take as the average mode density

V()‘aa )‘b)

o(g, A, z) = o= (60)

Eq. (60) should provide a reasonable approximation to the average mode density at high
frequencies where the modes are spaced closely together. It is not necessary to precisely locate
eigenvalues, nor is it necessary to construct eigenfunctions in order to compute eq. (60). It
is only necessary to count the number of zero crossings of a certain product of minors of the
propagator matrix. The mode density o(q, A, z) is also range dependent, and must be pre-
computed locally and stored along with the quantities necessary to construct the diffusivity
functional b(A, z).

Eq. (60) is quite general, and valid for an arbitrary fluid-elastic medium. We should
be able to construct a numerical solution to the energy diffusion equation (49) for any 2-D
fluid-elastic random medium of interest that satisfies the assumptions already stated. With
some additional assumptions it is possible to obtain a precise analytical expression for the
mode density.

We choose the horizontal slowness p, as our independent spectral variable, and restrict
it to lie in the range o}, < py < Bri, Where timin and B, are the minimum compressional
and shear speeds, respectively. In this slowness range the shear waves are propagating and
the compressional waves are evanescent. If the surface layers consist of water overlying very
low shear speed sediments, we take oy, equal to the minimum sound speed in the water,
and take (3, equal to the shear speed in the sediments at the water-sediment interface. We

assume further that the sediment shear speed is less than the compressional speed in the
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water. If the medium can be modeled as piecewise smooth, the high frequency asymptotic

limit of the dispersion relation is (Kennett 1983, p.297)

2075(ps) ~ (24 + 1/2)m + U(w, ps), (61)

where

o) = [ (), (62

the intercept time, is the integral of the vertical shear wave slowness p?(2) from the surface
to the shear wave turning depth Zs(p;), and ¥(w,p,) is a frequency dependent phase shift
from the effect of reflection from all interfaces, including the free surface. If the only interface

is a solid free surface then

\I’(wapz) = —argﬁ'ss(pz)' (63)

where R5S (ps) is the SS free surface reflection coefficient, which is frequency independent.
From eq. (61) we get
0g 10

o= o {wms(ps) - 3¥(w,2) (64

The first term inside the braces on the right hand side can be simplified further,

owrT,

S = WTs(:)Us(p2) = wXs(p) (65)

where

_l@w
W Op,

Us (66)

is the local shear wave group velocity, and
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xg= 2 (67)
Ops

is the local shear wave range at slowness p,. Using

78 (px) =1Ts (px) - pa:XS (pz)a (68)

where Ts(p,) is the local shear wave traveltime, and

XS(pz) - TS(pz)US(pm)a (69)

we have for the mode density from eq. (64)

0 1

(70)

Ops

109 (w,pa)
2 Jp, '

By combining eq. (70) with eq. (49), we have an equation that describes the range

dependent diffusion of energy in slowness space for the slowness range indicated above,

o = ) o (7 @) 2Z ) | (m)

where 0(q, P, ) is given by eq. (70), and from eq. (57)

b(pe7) =w? [ " R(r) dr. (72)

—00
The factor of w2 is from (9p, /0k)? in eq. (57), which we have removed from R(7). All the
medium dependent factors are computed locally with any suitable one dimensional code that
yields the complete displacement-stress field as a function of depth. The range dependence
enters explicitly when the diffusivity functional b(p,, z) is constructed.

Energy diffusion of SH waves or pure acoustic waves is also governed by equations of

the form of egs. (70) and (71). The only difference is that the free surface contribution to
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U(w,p,) will be zero. This is because there is no wave type conversion for SH, or for pure
acoustic waves, in 2-D media. If the medium is slowly varying, and the free surface is the

only interface, then

¥(w, pz) = 0. (73)

If we expand the derivatives with respect to p, in eq. (71), we get an equation the form

of a convection-diffusion equation with non-constant coefficients

oF
oz

OE(py, )

T) o
-T Ty )
(Pz, T) 7

= D(p,, o) 70 2)

where the diffusivity

D*(pg, ) = 0~ (¢, P ©)b(Ps, T), (75)
and T'?(p,,z) characterizes the rate at which energy spreads from a particular region of

Pg-Space

I*(ps, 2) = 07 (¢, Pss ¥) aim {o7(q, Pz, 2)b(ps, 7) } . (76)

Finally by introducing the transformation

= E(pe, 2){r(ps, 2)} V%, (77)

the first derivative with respect to p, can be eliminated from eq. (74), reducing it to a

Schrodinger equation

o%€ L0
ap% +V( zy T )8 =D b’;a (78)
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with the potential

10 (T\* 1/T\* 1 8 = (T@,x)\"
V) =35 (5) ~1(5) ~9ps | (“—mp;,x)) ap. (79)

The Schrodinger equation form may be useful because of the large amount of work that has

gone into its numerical solution. A drawback may be the complicated form of the potential

V(ps, ), and the boundary conditions discussed in the next section.

7 INITIAL AND BOUNDARY CONDITIONS

Eq. (71) is first order in z and second order in p,. In order to completely define the
diffusion problem, we need an initial condition and two boundary conditions. As an initial
condition, which does not have to satisfy the boundary conditions, we specify the source

spectrum at x =0

E(ps,0) = 8(pa)- (80)

For the particular problem defined above at the end of Section 6, the boundary conditions
are to be specified at the endpoints of a finite region of spectral space apy, < Pz < Bin-
Within this region of p, — space the propagating waves are almost pure SV. This spectral
region was chosen as an illustrative example for which the mode density function was easy to
calculate. First we will specify the appropriate boundary conditions for this specific problem,
then comment on how they must be changed for more general problems.

For p, > o} the compressional waves are evanescent and carry no energy. For p, < o},
energy in the SV waves is radiated away as P waves. We assume that this energy is carried
away and completely lost to the system. Because of this energy loss we choose

E(0pin, ) =0 (81)
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for the lower boundary condition, which corresponds to infinite loss.

For the upper boundary condition at p, = 8,,.., we also choose

E(Brin, ) = 0. (82)

in?

The reason for this choice is that for values of p, > 3.}, the propagating SV waves can lose

energy to the fundamental Rayleigh wave or low speed Stoneley waves. This choice for the

upper boundary condition is somewhat artificial since energy can flow into Rayleigh waves,
which are ignored by this choice.

If we give up being able to analytically calculate the mode density function in the interests

of covering the complete slowness range 0 < p, < oo, we need to reexamine the boundary

conditions. For the lower boundary condition at p,;, = 0, we must choose

g—i =0, for p,=0. (83)

Because we have assumed that there is no backscattering, the energy flux into regions of
spectral space for which p, < 0 must be zero. Eq. (83) is the mathematical statement of the
zero flux condition.

We must choose a finite upper limit for the upper boundary since there are no propagating
waves for p; > Praz, Where pp,, is the slowness for the fundamental Rayleigh or Stoneley
wave, whichever has the greatest slowness. Therefore, at the upper boundary we also have

a zero flux condition

FE
gz;; =0, for Dz = Pmax, (84)

indicating that no energy is allowed to flow into the spectral region for which p; > Pmae.
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If the Schrodinger equation form eq. (78) is employed, the zero flux boundary conditions

eq. (83) and eq. (84) assume the form

8 (T2
5t (5> £=0. (85)

Mixed boundary conditions of the form eq. (85) complicate the solution process in general.
The zero energy boundary conditions such as eq. (81) and eq. (82) retain their same form,

as does the initial condition eq. (80).

8 DISCUSSION OF ELEMENTARY SOLUTIONS TO THE DIFFUSION

EQUATION

The energy diffusion problems described by eq. (49) or eq. (71) and the boundary conditions
given in the previous section must be solved numerically for any realistic problem of interest.
However some qualitative insight can be gained by examining simple solutions for constant
diffusivity. We define two example problems that illustrate the points. Because we specify
constant diffusivity, the “convection” term in eq. (74) vanishes since the coefficient of that

term is the derivative of the diffusivity.
Problem L

The first example problem is

OF _ ,0°F

a—x = 8p2 T > 0 and DPmin < D < Pmaz) (86)

with initial condition eq. (80) and boundary conditions

aE max
E(pmin, ) = % =0. (87)
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The constant diffusivity is denoted by D2, and has units of [slowness?®/length]. Problem I
assumes zero energy flux above a maximum value of p, = Ppq, and assumes that any energy
scattered to compressional waves at p; = Pmin iS completely lost to the system. This problem
defines an eigenvalue problem for the energy E(p.,z) in the region pmin < P < DPmes that
can be solved by a number of different methods, It is treated in detail by most textbooks
on partial differential equations, so we simply state the Fourier series representation of the

solution

E(pe,z) = 3 ane”®PP2 . ftan(Xypimas) sin(Anps) + cos(Apz)} (88)

n=1

where the eigenvalue A, which is not related in any way to the spectral parameter A used

earlier, is

w(2n —1)
2(pmaz - pmin)

?

and n is the summation index. The expansion coefficients are

an = 2 {(pmam - pmm) - 'L COS(An((pmaz + pmm))}_ /pmw S( z) COS(/\an) dpac (90)

An Prmin

There are several things to notice about the form of the solution eq. (88). It is apparent
that as the propagation distance in the strongly scattering medium x — oo that the energy
E — 0. All the energy is eventually scattered away to body waves and lost to the system.
Also any structure that may initially exist in the p,-spectrum is smeared out as the prop-
agation distance increases. The sharpest peaks in the spectrum correspond to the largest
eigenvalues of the solution eq. (88), but the spectral components with the largest eigenvalues
suffer the largest damping proportional to exp(—n?z) with range. The effect of a strongly

scattering medium is to homogenize the spectrum and destroy any coherent signal.
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Problem I1.

The second example problem is defined by replacing the zero energy boundary condition

at Py = Ppin by the zero flux boundary condition eq. (83) at p, = 0. Because of the zero

flux boundary conditions at both ends of the spectral interval, there is no energy loss to the

system. The solution is a sum of a steady state (ss) part and a transient (t) part.

E(pa:a CL') = Ess + Et:

where the steady state part is the total energy divided by the interval length

1 Pmaz

p max

The transient part of the solution is

Ey(psz) = Y ane®PY% cos(\p,),

n=1

where

and

2

p mazx

Ay =

Pmazx
/0 S(pz) cos(Anps) dps.

(91)

(93)

(94)

(95)

In the limit as  — oo the transient part of the solution vanishes and the energy is distributed

uniformly throughout the spectral region 0 < p, < Piaz. As with Problem I all coherent

structure disappears from the spectrum. This is illustrated in Figure 2. The remaining

steady state solution corresponds to the zero eigenvalue. For a realistic medium with non-

zero intrinsic attenuation there will of course be no steady state solution. The energy will

approach zero as x — oo.
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The only requirement for the validity of the Fourier series representation of the solutions
to Problem I and Problem Il is that S(p,) be continuous. We have previously assumed in the
derivation of the diffusion equation that the spectrum could be represented by a continuum.
The disadvantage of the representations eq. (88) and eq. (93) from a computational stand-
point is that the series have rather poor convergence properties for small z. For very small
z the Green’s function representation of the solutions is more efficient. We do not reproduce
the Green’s functions for the problems here. Kevorkian (1990, Chapter 1) has an excellent
discussion of the various solution representations for the diffusion equation including a proof
of the equivalence of the Fourier series and the Green’s function solutions. A final comment
on the Green’s function representation is that it is very inefficient for large x because a large
number of image sources are required in order to satisfy the zero flux boundary conditions

for either Problem I or Problem II.

9 ATTENUATION

The theory presented above is also valid for arbitrary dissipative media if the scalar product
eq. (11) is replaced with the more general scalar product defined by Maupin (1992). The form
of the energy diffusivity functional is such that it can be locally calculated with a reflectivity
program. Most reflectivity codes incorporate arbitrary attenuation by introducing complex
frequency dependent velocities or elastic moduli. The viscoelastic correspondence principle
states that the governing equations and boundary conditions for the displacement-stress
fields are formally identical in the perfectly elastic and dissipative cases. The only difference
is that the velocities or the elastic moduli for the perfectly elastic media are replaced with
complex velocities or elastic moduli for the dissipative media. Attenuation then enters the
problem in a natural and straightforward way, rather than in the ad hoc manner used by

Gloge (1972), Marcuse (1974) and all the energy diffusion equations (so far as we are aware)
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originating from radiative transfer theory.

One problematic practical issue is the computation of the mode density function g(g, A, ),
which would have to be done in complex (g, ) space. Woodhouse’s (1988) mode count
function v(A,, Ap) for the Rayleigh wave case was derived for real systems of equations, not

complex systems. A possible solution might be to estimate it with its real value.

10 CONCLUSIONS

We have derived a very general energy diffusion equation (49) directly from the local coupled
mode representation of the displacement-stress field for a randomly heterogeneous 2-D fluid-
elastic medium. Eq. (49) describes the diffusion in spectral space as a function of range
in media whose propagation processes are dominated by strong scattering in the forward
direction. The derivation proceeds in a systematic way following a well defined sequence
of assumptions, and is explicitly frequency dependent. Because of the large number of

assumptions required to derive the energy diffusion equation, we summarize them here:

1. Backscattering is neglected. This implies that our results are most applicable to media

characterized by velocity heterogeneities or very weak impedance heterogeneities.

2. Mode coupling is weak enough to express the forward scattered amplitudes by the first
two terms of the series expansion for the matrix exponential. This approximation takes

first order mode coupling into account.

3. The statistically non-uniform random medium can be characterized by a series of re-

gions of frequency dependent length £(w) that are approximately statistically uniform.

4. The frequency dependent correlation length scale I(w) of the medium heterogeneities is

much smaller than the length scale of the statistically uniform regions (I(w) < L(w)).
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5. The range dependent displacement-stress field amplitudes ¢,(z) vary slowly over the

correlation distance [(w) of the medium.
6. The distributions of the horizontal gradients of the medium properties are zero mean.

7. The autocorrelation of the coupling matrix Ry.(7) = (B (z)B}.(z — 7)) makes a

significant contribution only over the distance of a medium correlation length [(w).

8. The mode spectrum can be represented by a continuum in the high frequency limit.

A further useful approximation is that the part of the coupling matrix By, that depends
directly on the displacement-stress field components is constant throughout the statistically
uniform regions. If this is the case, the energy diffusivity functional is seen to be directly
proportional to the autospectra and cross-spectra of the horizontal derivatives of the medium
properties.

The specific example given for the energy diffusion of Rayleigh waves in the slowness
range o+ < py < Bt where @i, and B, are the minimum compressional and shear
speeds of the medium, is also formally identical to the energy diffusion equation for Love
waves or for scalar acoustic waves propagating in a waveguide.

Elementary solutions to the diffusion equation for relevant boundary conditions clearly
illustrate the the homogenization of the spectrum as the propagation distance increases. The

most singular features of the initial spectrum are the most heavily damped with range.
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APPENDIX A: MAUPIN’S COUPLING MATRIX FOR FLUID-ELASTIC

MEDIA

In this appendix we include for reference, Maupin’s (1988) mode coupling matrix for a general
range dependent model comprised of a fluid layer of depth h;(x) lying over a semi-infinite
solid halfspace. The incompressibility of the fluid layer is designated by x, which is a minor
deviation from Maupin’s (1988) notation. The designations h; and A7 indicate that those
terms are to be evaluated in the fluid just above the fluid-solid interface and in the solid just
below the fluid-solid interface, respectively. The dot (e.g. p) indicates differentiation with
respect to x. The elements of the Cj; and the Q;; for isotropic and transversely isotropic

media are given in Maupin (1988) and (1992), respectively.
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Figure Captions

Figure 1. Geometry and notation used for the energy diffusion problem. The randomly
heterogeneous region is 7 — z, is divided up into NV approximately statistically stationary
regions L;(w), (i = 1, N). Within any approximately stationary region £;(w), we assume

lj(i) (w) € L;(w), where lj(-i) (w) is the frequency dependent correlation length.

Figure 2. Schematic representation of the evolution of the energy spectrum with propaga-
tion distance. The initial condition at z = 0 must be continuous, but may have sharp closely
space peaks (a). The sharpest spectral features decay most rapidly with range according to
egs. (88) and (93) (b). In the limit that z — oo, the energy is distributed uniformly within

the propagating wave spectral band with energy amplitude given by eq. (92) (c).
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EXTENDED ABSTRACT

Modal Attenuation and Interaction with a Transversely Isotropic
Viscoelastic Bottom in Shallow Water Acoustic Propagation

R.I. Odom and J.A. Mercer
Applied Physics Laboratory
University of Washington, 1013 NE 40th St., Seattle, WA 98105
206-685-3788; odom@apl.washington.edu

Introduction

An acoustic signal propagating in shallow water can be conveniently represented as a
linear superposition of orthogonal modes. Our definition of shallow water is frequency
dependent since, by "shallow" we mean that the water is a "few" acoustic wavelengths in
depth. A "few" is somewhat arbitrary, but may be as many as 100. The main point is that
acoustic signal propagation in shallow water exhibits interference and diffraction
phenomena that are not well modelled with ray theory.

When modal representations of the acoustic field have been applied to shallow water
sound propagation by the ocean acoustics community, it has been fairly common practice
to include the effects of attenuation as a first order perturbation to modal eigenvalues
(e.g. Ingenito, 1973; Zhou, 1985). First order perturbation theory ignores anelastic cou-
pling between modes and requires that k/(Qdk)<«1 where k is the unperturbed
wavenumber, Ok is the unperturbed wavenumber spacing and Q is the spatial quality fac-
tor. Because at low frequencies a significant fraction of a shallow water acoustic signal
propagates in low Q bottom sediments, k/(Q6k) can be O (1). This makes the use of per-
turbation theory invalid, and can introduce serious errors in mode sum acoustic signal
synthesis. Ewing et al. (1992) report shear Q values in the range 20 - 50 for continental
shelf sediments off the New Jersey.

The severity of the error resulting from the improper treatment of attenuation in mode
sum signal synthesis has been graphically illustrated by Day et al. (1989). Day et al. cal-
culated synthetic seismograms for stratified models consisting of a high Q layer over a
layered half space. The shear Q of the underlying half space was lower than the Q in the
overlying layer, and half space shear speeds were lower than the compressional wave
speed in the overlying layer. The signals calculated from modal summation dramatically
overestimate the effect of the low shear Q on the complete signal. The mode summation
results are compared with the results from a wavenumber integration routine (Apsel, R.J.
and J.E. Luco, 1983) that is similar to SAFARI (Schmidt and Tango, 1986), at least in the
way in which attenuation is incorporated into the model. Serious errors in the mode sum
seismograms are traced by Day et al. to the way in which perturbation theory is applied
to treat the anelastic problem. Specifically, the difficulty occurs with the use of the
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unperturbed elastic eigenfunctions in the anelastic problem. Because the problem is with
the eigenfunctions themselves, it cannot be repaired with higher order perturbation
corrections to the eigenvalues. The problem does not appear when using wavenumber
integration routines, because the attenuation is incorporated directly through the use of
complex, frequency dependent compressional and shear speeds.

If one wishes to retain the physical insight inherent in a modal representation of the
acoustic field, and properly incorporate the effects of anelasticity, one approach is to
invoke the correspondence principle (e.g. Leitman and Fisher, 1973), and solve for the
anelastic modes directly. The correspondence principle states that the equations of
motion for a linear viscoelastic material are just the equations for a perfectly elastic
material with the elastic moduli replaced with the complex, frequency dependent anelas-
tic moduli. The anelastic moduli must be frequency dependent to preserve causality.

The correspondence principle approach has been used by Yuen and Peltier (1982) and
Buland et al. (1985) to model aspects of the free oscillations of the whole earth. To a
limited extent, it has also been applied to shallow water propagation problems. Bucker
and Morris (1965) employed the correspondence principle to solve for the anelastic
eigenwavenumbers and model the propagation loss for a shallow water problem with a
fairly simple structure.

We adopt a different approach in that we represent the anelastic modes as a complex
superposition of elastic eigenfunctions. The effects due to anelastic mode coupling are
explicitly included and there is no restriction on the magnitude of the damping. Our
approach is a traveling wave adaptation of Tromp and Dahlen (1990), who derived an
elegant solution for the free oscillations of an anelastic spherical earth in terms of the
elastic eigenfunctions and eigenfrequencies. Advantages of using the elastic eigenfunc-
tions as a basis for the anelastic eigenfunctions are: 1. The effect of anelasticity on indi-
vidual modes can be examined in detail; 2. The effect of range dependent attenuation can
be studied by making the complex expansion coefficients range dependent. If the
environment is not geometrically range dependent, we can employ the same elastic basis;
3. Used in conjunction with a general range dependent coupled mode program, the pro-
pagation physics of a strongly range dependent shallow water environment can be stu-
died in detail. We have the ability to isolate the influence of the geometry, and different
aspects of the rheology of the medium on a propagating shallow water signal.

We have derived a generalized eigenvalue equation for the complex eigenwavenumbers
and complex coefficients used in the superposition of the elastic eigenfunctions to con-
struct the anelastic eigenfunctions. Our generalized eigenvalue equation is strictly linear
for the complex anelastic eigenwavenumbers. This is in contrast to the nonlinear eigen-
value equation for the anelastic eigenfrequencies of the free oscillations of the earth
(Dahlen, 1981; Tromp and Dahlen, 1990). The reason for this difference is our choice of
the frequency o as the independent variable. Because of the standing wave nature of the
earth free oscillation problem, ® is taken as the dependent variable in the dispersion rela-
tion. Since the anelastic moduli are frequency dependent, the eigenvalue equation for the
anelastic free oscillations is nonlinear.

Our derivation also includes the effects of transverse isotropy, which has a single vertical
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axis of symmetry. It is commonly observed that horizontally propagating SH waves have
higher speeds than horizontally propagating, vertically polarized (SV) or vertically pro-
pagating shear waves. In addition, higher compressional wave speeds for horizontally
propagating compressional waves than for vertically propagating compressional waves
are observed (Ewing et al., 1992). Berge et al. (1991) report shear wave anisotropy of
12% - 15% in the same shelf region off of New Jersey studied by Ewing et al.

Definitions and notation

The derivation of the generalized eigenvalue equation for the anelastic
eigenwavenumbers will be sketched briefly. A more detailed treatment is currently being
prepared for publication. We adopt the notational conventions of Takeuchi and Saito
(1972), who treat seismic surface waves and free oscillations explicitly for a transversely
isotropic earth. As mentioned above, the case of transverse isotropy is probably the most
relevant for bottom interacting shallow water propagation. Berge et al.(1991) felt that
additional azimuthal anisotropy induced by ripples in the sediment surface or cracks
would be very weak. A particular feature of transversly isotropic media is that the P - SV
motion still decouples from the SH motion. This is not true for more general anisotropy.
We include the SH problem for completeness, but discuss it only briefly. It is the P - SV
problem that describes, when the appropriate limits are taken, the propagation of an
acoustic signal propagating in shallow water over a plane layered viscoelastic bottom.

Our coordinate system is a right handed coordinate system with the propagation direction
along the x axis, y positive into the paper, and z positive upward. As mentioned the P -
SV (Rayleigh) motion decouples from the SH (Love) motion. The perfectly elastic dis-
placements u; and stresses o;; for P - SV are

iy = —i y3(z;0,k)e’ (7R
uy, =0 (1)
u, =y 1(z;0,k)e’ (O =+
and
[ d .
O = [P~ kAys | ef(Ork0
Oy = |F=~ ~k(A-2N)y; e (O1—k)
Gy =Yg (O1=F) )
Oy = iy ei(0r-k)

Oy; = Oyy = 0
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The boundary conditions on the y; for P - SV are

yi(i=1,2,3,4) continuous
vy =y4 =0 atthe free surface z=0
yvi(i=1,2,3,4) - 0 as z - —oo

The displacements and stress for SH motion are

u, =u, =0

Uy = y1(z;0,k)e’ ()

and

d
L)’l

ei(wt—kx)
dz

Oy, =

O,y = —i k Ny e!(@-k)

xy
Oxx = Oyy =0, =0, =0
In addition, we introduce the definition for y,

dy
ya(z;m,k) = L———1
daz

so that
Gy = yzei(mt-—kx)

The boundary conditions for the y; for SH are

¥1,Y2 continuous
yo =0 atthe free surface z =0

Y1,y —> 0 as z = —oo

©)

4)

®)

(6)

)

)

In order to minimize the notational overhead, we make no distinction between the y;’s for
the P - SV and SH problems. We will concentrate mainly on the P - SV problem. The
meaning of the y;’s will be clear from context. The P - SV and SH problems are treated

separately since they do not couple in transversly isotropic media.

The above equations of motion for a perfectly elastic medium may be represented in first

order form as




d.brr =MrpbrL 9)

where the subscripts R, L indicate whether we are referring to the P - SV [Eq. (1) - (3)]
or the SH [Eq. (4) - (8)] systems of equations. The vectors bg ;. and the matrices Mg 1,
are defined for P - SV motion as

br = (¥1.¥2,¥3.54)" (10)
and
0 c! kF/C 0
~o’p 0 0 k
Mg = (11)
-k 0 0 Lt
0 -kFC [kz [A—FZ/C] - w? p] 0

and for SH motion as

by = (y1.y2)" (12)

and

0 L!
M, = (13)
[kzN-coz p] 0

In the matrices Mg ,, O is the real angular frequency, p is the density, k is the horizontal
wavenumber for a perfectly elastic medium, and A, C, F, L and N are the five elastic
moduli necessary to characterize a transversly isotropic medium. When

A=C=A+2p L=N=pu F=2A (14)

the medium is isotropic.

From this point on, we drop the subscripts R, L on the vector b and the matrix M. It will
be apparent from context which system we mean. The following development will be for
the P - SV system. Analogous results for the SH system are summarized at the endof the

paper.

There are inherent symmetries in the equations of motion (Kennett et al., 1978 and
Thomson et al., 1986) that can be exploited to construct compact expressions useful for
very efficiently deriving the elastic wave dispersion relation, orthogonality relationships
and other quantities. Define the matrices R, S, A and Z as




[ A 0 =0
R= and S= (15)
| 0 A 0 =
and
[ 0 1 0 1
A= and E= (16)
-1 0 0 0

Using the matrices defined above, we can form various compositions of two stress fields.
For example for P - SV, we can form

9,(bTSb) = bT [MTS+SM] b (17)

whereby we operate from the left and the right with the same stress displacement vector
b. When both sides are integrated with respect to z from —oo to 0, we obtain the disper-
sion relation for Rayleigh waves in a transversly isotropic medium.

©’l, = k%L, + kI3 +1, (18)
where

0
I = Ip(ylz +y32)dz (19)

1]
L=]@y2+Ays2)ds (20)
I 2? Ly, 22 gy, 21|, @1
3= 7 V1 dz Y3 dz 4

0 2 2

dy dys

L=||c= 41— |4 22
4 _‘[o dz * dz ¢ @2)

The left hand side of Eq. (17) is a perfect differential in z, and after integration it vanishes
when the boundary conditions are applied.

Derivation of the generalized eigenvalue equation

The complex generalized eigenvalue equation for the complex eigenwavenumbers is
derived in a straightforward manner. Invoking the correspondence principle, we
represent the equations of motion for an anelastic transversly isotropic medium as

d,¢c =Mc (23)
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where ¢ and M represent the stress-displacement vector and wave operator matrix,
respectively for anelastic media. For our definition of M, we take

~ ~ o~

0 c-! KF/C 0
. ~-o%p 0 0 K
M= . 24)
- 0 0 L~}

0 -—xF/C [KZ[A—ﬁz/é]—ozp] 0

~ o~ o~

The symbols A, C,F,L and N are the five complex frequency dependent elastic moduli
for an anelastic transversly isotropic solid; x is the eigenwavenumber for the anelastic
solid; o is the frequency, which we take to be real for propagating waves.

We take

c=c¢, 25)

where ¢, is an eigenfunction of the anelastic medium and is a solution of Eq. (23). In
addition, we represent ¢, as a complex linear superposition of the eigenfunctions of the
perfectly elastic problem

¢ = ZQm nbm (26)

0, » is the matrix of complex coefficients that transforms the elastic eigenfunctions b,, to
the anelastic solutions.

Employing the matrix R defined above, we form the composition of an anelastic mode ¢,
as represented by Eq. (26) and an elastic mode b,

3,.(b,"Rc,) = b,T [MTR + RM] c, 27)
and integrate over z from —oo to 0. The elastic and anelastic problems satisfy the same
boundary conditions, so the left hand side of Eq. (27) vanishes after the integration.

By assuming that the elastic eigenfunction b,, and the anelastic eigenfunction ¢, have the
same real frequency so that

o? = o? (28)

we arrive at the following infinite generalized quadratic eigenvalue equation for the ane-
lastic eigenwavenumbers K,

Aq, +x,Bq, +%,°Cq, = 0 (29)




where

A=

00

k,2 [A—FZ/C] y3™y ;™

F
+ ky [ [yl‘”)y4(’") +y,My, ™ ] s [}’2("))’3('") +y3(”)yz(’”)] }

- [c-1 —é‘l] Y2 @y, — [L"l —ffl] y4<">y4<'">] & (0
9 F
B=| [y1(”)y4"")+y4(”)y1"”)] -2 [yz(”)ys(’")+y3("’yz(’")]]dz(31)
O [ o~ ~ ~
c= | [A—FZ/C] y3(")y3('")] dz (32)

The eigenvectors q, are the columns of the matrix Q

Q=(....,q,...) (33)

By making the assignment
Ir, = x,1q, (34)

the quadratic generalized eigenvalue problem Eq. (29) can be converted to a linear gen-
eralized eigenvalue problem (Garbow et al., 1977) at the expense of doubling the dimen-
sion of the system

A B qn 0 -C qn
= Ky (35)
0 I r, I 0 r,

Equation (35) is the main result of this paper. The solution of this linear generalized
matrix eigenvalue problem yields the complex eigenwavenumbers K, for the modes of an
anelastic transversly isotropic medium and the eigenvectors q,. The eigenvectors q, of
Eq. (35) are the columns of the transformation matrix Q, ,, used to construct the anelastic
eigenfunctions from the elastic eigenfunctions from Eq. (26). The linearity of Eq. (35) is
an important point and should be contrasted with the result derived by Tromp and Dahlen
(1990) for the free oscillations of the earth. Their equation (3.5) is

[Qz + V(Gk)] QG = Okqx (36)
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The matrix € is a diagonal matrix of eigenfrequencies for the perfectly elastic earth;
is the k™ column of the transformation matrix Q; oy, is the complex eigenfrequency of
the k™ anelastic mode; and V(o) is an anelastic potential energy matrix that is a func-
tional of products of the elastic eigenfunctions and the complex frequency dependent
elastic moduli. The standing wave nature of the earth free oscillation problem leads to
the choice of the frequency as the dependent variable. Because of the dependence of the
elastic moduli on frequency, the problem, Eq. (36), is nonlinear. The choice of frequency
as the independent variable for the traveling wave problem leads to the linear problem
we have derived above, Eq.(35).

We have also derived similar results for the SH problem. We form the compostion
3,(b,TE¢c,) = b,T [MT =+ EM] c, (37)

As definitions of M and b, we take Egs. (12) and (13) for SH motion. For M we take Eq.
(13) with k replaced by x, and N and L replaced by N and L, respectively. Likewise the
definition of ¢ follows from Eq. (12) and (25). Upon integrating Eq. (37) with respect to z
from O to — oo, carrying out some additional algebra and again setting

®? = o? (38)
we arrive at
[anI_KnZN_L] q, = an qn 39)
where
-1
0 0
N= | [Ny ®2dz| [Ny, ™y, ™ g (40)
and
0 1y W) . (m)
dy " dy \"
L= | [Ny, ®2q| Joo22t—2 gy, @1)
e e dz dz

The two_terms 8L and ON are the complex frequency dependent parts of the two shear
moduli L and N. The anelasticity tensor E,-jkl for a linear viscoelastic material can be
written

Cijii = Cijir + Oc (W) (42)

We were able to separate the perfectly elastic part from the frequency dependent anelas-

tic part for the SH problem. There is no restriction on the magnitude of 6L and dN. Also

note that Eq. (39) is linear in K.
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A final point is that both Eq. (35) and Eq. (39) are infinite in dimension. Any practical
implementation will necessarily employ a truncated mode set. This should not be much
of a restriction, as most low frequency shallow water signals can be adquately modelled
with a limited number of modes.

Conclusions

The linear complex generalized eigenvalue equations (35) and (39) appear to be
genuinely new results. They are useful for modeling and characterizing acoustic signals
propagating in a shallow water environment characterized by high attenuation and
transverse isotropy. This is an environment where a perturbation treatment of the bottom
properties applied to mode summation signal synthesis will lead to erroneous results. The
solution of equations (35) and (36) are used to represent the anelastic modes in terms of
the elastic modes, permitting a detailed analysis of the physics of strongly bottom
interacting acoustic propagation. The effects of transverse isotropy and attenuation,
including attenuation induced dispersion, are properly accounted for. Stable well-
behaved numerical algorithms exist for solving the complex generalized eigenvalue
problem, even in cases where the the matrices involved are near singular. Our next step is
the numerical implementation of Egs. (35) and (39).
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